Vector weighting functions: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
No edit summary
Line 5: Line 5:
<math> \vec \bold u \bullet \vec \bold v = \sum_{k=1}^3 u_k \vec \bold a_k \bullet \sum_{m=1}^3 v_m \vec \bold a_m  = \sum_{k=1}^3 u_k \sum_{m=1}^3  v_m \vec \bold a_k \bullet  \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3  v_m \delta_{k,m} = \sum_{k=1}^3 v_k u_k </math>
<math> \vec \bold u \bullet \vec \bold v = \sum_{k=1}^3 u_k \vec \bold a_k \bullet \sum_{m=1}^3 v_m \vec \bold a_m  = \sum_{k=1}^3 u_k \sum_{m=1}^3  v_m \vec \bold a_k \bullet  \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3  v_m \delta_{k,m} = \sum_{k=1}^3 v_k u_k </math>


What if they aren't from a normalized system, so that
What if they aren't from a normalized system, so that  
 
<math>\vec \bold a_k \bullet \vec \bold a_n = w_k \delta_{k,n} </math>
 
where the <math> w_k </math> is the square of the length of <math> \vec \bold a_k </math> and the symbol <math> \delta_{k,n} </math> is one when k = n and zero otherwise?  Well the general inner product of <math> \vec \bold u </math> and <math> \vec \bold v </math> becomes
 
<math> \vec \bold u \bullet \vec \bold v = \sum_{k=1}^3 u_k \vec \bold a_k \bullet \sum_{m=1}^3 v_m \vec \bold a_m  = \sum_{k=1}^3 u_k \sum_{m=1}^3  v_m \vec \bold a_k \bullet  \vec \bold a_m = \sum_{k=1}^3 u_k \sum_{m=1}^3  v_m w_k\delta_{k,m} = \sum_{k=1}^3 w_k v_k u_k </math>.

Revision as of 11:34, 24 September 2004

Orthogonal but not Orthonormal Basis Sets

Suppose we have two vectors from an orthonormal system, u and v. Taking the inner product of these vectors, we get

uv=k=13ukakm=13vmam=k=13ukm=13vmakam=k=13ukm=13vmδk,m=k=13vkuk

What if they aren't from a normalized system, so that

akan=wkδk,n

where the wk is the square of the length of ak and the symbol δk,n is one when k = n and zero otherwise? Well the general inner product of u and v becomes

uv=k=13ukakm=13vmam=k=13ukm=13vmakam=k=13ukm=13vmwkδk,m=k=13wkvkuk.