Homework: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Homework #9== | ==Homework #9== | ||
Problem Statement: | <b>Problem Statement:</b> | ||
<br> | <br> | ||
Show that, for a bandwidth limited signal (<math> x(t) </math> with <math> f_{max} < {1\over {2T}} </math>) | Show that, for a bandwidth limited signal (<math> x(t) </math> with <math> f_{max} < {1\over {2T}} </math>) | ||
<br> | |||
<math> | |||
\sum_{k=-\infty}^{\infty} \left | x(kT) \right | ^2 | |||
=c\int_{-\infty}^{\infty} \left | x(t) \right | ^2\,dt | |||
</math> | |||
<br> | |||
And find c. | |||
<br> | |||
<br> | |||
<b> Equations: </b> | |||
<br> | |||
<math> | |||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle=\int_{-\infty}^{\infty} \phi_k(t)^{*} \phi_l(t)\,dt | |||
</math> | |||
<br> | |||
<math> | |||
x(t)=\sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) | |||
</math> | |||
<br> | |||
<b>Solution:</b> | |||
<br> | |||
<math> | |||
\begin{matrix} | |||
\left \langle x(t) \vert x(t) \right \rangle & = & \int_{-\infty}^{\infty} x(t)^{*} x(t)\,dt | |||
\\ \ & = & \int_{-\infty}^{\infty} \left | x(t) \right |^2\,dt | |||
\end{matrix} | |||
</math> | |||
<br> | |||
<math> | |||
x(t)=\sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) | |||
</math> | |||
<br> | |||
<math> | |||
\begin{matrix} | |||
\Rightarrow \left \langle x(t) \vert x(t) \right \rangle & = & | |||
\left \langle \sum_{k=-\infty}^{\infty} x(kT)\phi_k(t) \vert \sum_{l=-\infty}^{\infty} x(lT)\phi_l(t) \right \rangle | |||
\\ \ & = & \sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty} x(kT)x(lT) | |||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle | |||
\end{matrix} | |||
</math> | |||
<br> | |||
By earlier work: | |||
<math> | |||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle | |||
=T\delta_{l,k} | |||
</math> | |||
<br> | |||
<math> | |||
\Rightarrow | |||
\sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty} x(kT)x(lT) | |||
\left \langle \phi_k(t) \vert \phi_l(t) \right \rangle | |||
=T\sum_{k=-\infty}^{\infty} \left | x(kT) \right |^2 | |||
</math> | |||
<br> | |||
<math> | |||
\Rightarrow | |||
\sum_{k=-\infty}^{\infty} \left | x(kT) \right | ^2 | |||
={1\over T}\int_{-\infty}^{\infty} \left | x(t) \right | ^2\,dt | |||
</math> | |||
<br> | |||
<math> | <math> | ||
\ | \Rightarrow | ||
c={1\over T} | |||
</math> | </math> | ||
==Homework #13== | |||
Total time spent working on Wiki: 3 hrs |
Latest revision as of 11:02, 10 December 2004
Homework #9
Problem Statement:
Show that, for a bandwidth limited signal ( with )
And find c.
Equations:
Solution:
By earlier work:
Homework #13
Total time spent working on Wiki: 3 hrs