Signals and systems/GF Fourier: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(37 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Fourier series==
The Fourier series is used to analyze arbitrary periodic functions by showing them as a composite of sines and cosines.

A function is considered periodic if <math> x(t) = x(t+T)\, </math> for <math> T \neq 0 </math>.

The exponential form of the Fourier series is defined as <math> x(t) = \sum_{n=-\infty}^\infty \alpha_n e^{{j2\pi nt}/T} \, </math>

==Determining the coefficient <math> \alpha_n \,</math> ==

== <math> \left \langle Bra \mid Ket \right \rangle </math> Notation ==

==Linear Time Invariant Systems==

==Changing Basis Functions==

==Identities==
<math>e^{j \theta} = \cos \theta + j \sin \theta \, </math>

<math>\sin x = \frac{e^{jx}-e^{-jx}}{2j} \,</math>

<math>\cos x = \frac{e^{jx}+e^{-jx}}{2} \,</math>

<math> \left \langle n \mid m \right \rangle = T \delta_{n,m} \,</math>

Latest revision as of 07:29, 4 November 2006