DFT Exploration by harrde: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
==Solution== |
==Solution== |
||
Here is the MATLAB code and resulting figures: |
|||
<pre> |
|||
f = 3; % Sampling freq. |
|||
T = 1/f; % Sampling period |
|||
t = 0:.01:5; |
|||
N2 = 500; % Number of sampling points |
|||
N3 = 30; |
|||
t2 = 0:T:N2*T; |
|||
t3 = 0:T:N3*T; |
|||
x = sin(2*pi*t); % Signal that is sampled |
|||
x2 = sin(2*pi*t2); |
|||
x3 = sin(2*pi*t3); |
|||
X2 = fft(x2); % DFT of long signal |
|||
X3 = fft(x3); % DFT of short signal |
|||
figure(1) %Original signal |
|||
plot(t(1:500),x(1:500)) |
|||
xlabel('Time (s)') |
|||
ylabel('x(t)') |
|||
title('Original Input Signal') |
|||
figure(2) |
|||
plot(t2(1:15),x2(1:15)) % Sampled signal |
|||
xlabel('Time (s)') |
|||
ylabel('x(t)') |
|||
title('Sampled Input Signal') |
|||
figure(3) %DFT of long signal |
|||
plot(t2/(N2*T*T),abs(X2)) |
|||
xlabel('Frequency (s)') |
|||
ylabel('X(F)') |
|||
title('DFT of 500 Samples') |
|||
figure(4) % DFT of short signal |
|||
plot(t3/(N3*T*T),abs(X3)) |
|||
xlabel('Frequency (s)') |
|||
ylabel('X(F)') |
|||
title('DFT of 30 Samples') |
|||
figure(5) % Shifted DFT of long signal |
|||
XS2=fftshift(X2); |
|||
f2=-1/(2*T):1/(N2*T):1/(2*T); |
|||
plot(f2,abs(XS2)) |
|||
xlabel('Frequency (s)') |
|||
ylabel('X(F)') |
|||
title('Shifted DFT of 500 Samples') |
|||
figure(6) % Shifted DFT of short signal |
|||
XS3=fftshift(X3); |
|||
f3=-1/(2*T):1/(N3*T):1/(2*T); |
|||
plot(f3,abs(XS3)) |
|||
xlabel('Frequency (s)') |
|||
ylabel('X(F)') |
|||
title('Shifted DFT of 30 Samples') |
|||
</pre> |
|||
[[DH13_1.jpg]] |
|||
[[DH13_2.jpg]] |
|||
[[DH13_3.jpg]] |
|||
[[DH13_4.jpg]] |
|||
[[DH13_5.jpg]] |
|||
[[DH13_6.jpg]] |
Revision as of 22:35, 6 December 2007
Problem Statement
Sample at 3Hz, take the DFT, and explain the results.
Solution
Here is the MATLAB code and resulting figures:
f = 3; % Sampling freq. T = 1/f; % Sampling period t = 0:.01:5; N2 = 500; % Number of sampling points N3 = 30; t2 = 0:T:N2*T; t3 = 0:T:N3*T; x = sin(2*pi*t); % Signal that is sampled x2 = sin(2*pi*t2); x3 = sin(2*pi*t3); X2 = fft(x2); % DFT of long signal X3 = fft(x3); % DFT of short signal figure(1) %Original signal plot(t(1:500),x(1:500)) xlabel('Time (s)') ylabel('x(t)') title('Original Input Signal') figure(2) plot(t2(1:15),x2(1:15)) % Sampled signal xlabel('Time (s)') ylabel('x(t)') title('Sampled Input Signal') figure(3) %DFT of long signal plot(t2/(N2*T*T),abs(X2)) xlabel('Frequency (s)') ylabel('X(F)') title('DFT of 500 Samples') figure(4) % DFT of short signal plot(t3/(N3*T*T),abs(X3)) xlabel('Frequency (s)') ylabel('X(F)') title('DFT of 30 Samples') figure(5) % Shifted DFT of long signal XS2=fftshift(X2); f2=-1/(2*T):1/(N2*T):1/(2*T); plot(f2,abs(XS2)) xlabel('Frequency (s)') ylabel('X(F)') title('Shifted DFT of 500 Samples') figure(6) % Shifted DFT of short signal XS3=fftshift(X3); f3=-1/(2*T):1/(N3*T):1/(2*T); plot(f3,abs(XS3)) xlabel('Frequency (s)') ylabel('X(F)') title('Shifted DFT of 30 Samples')
DH13_1.jpg DH13_2.jpg DH13_3.jpg DH13_4.jpg DH13_5.jpg DH13_6.jpg