10/01 - Vectors & Functions: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 17: Line 17:
==Changing from one orthogonal Basis Functions to another==
==Changing from one orthogonal Basis Functions to another==
If you have a vector <math> \hat v = \sum_{j=1}^3 a_j \hat a_j </math> and wish to change it to <math> \hat v = \sum_{j=1}^3 b_j \hat b_j</math>
If you have a vector <math> \hat v = \sum_{j=1}^3 a_j \hat a_j </math> and wish to change it to <math> \hat v = \sum_{j=1}^3 b_j \hat b_j</math>
:<math> \hat v = \sum_{j=1}^3 a_j \hat a_j = \hat v \cdot \hat b_m= \sum_{j=1}^3 a_j \hat a_j \cdot \hat b_m = \sum_{j=1}^3 a_j \underbrace{(\hat a_j \cdot \hat b_m )}_{proj of \hat a_j on \hat b_m} = \sum_{j=1}^3 a_j k_m \delta mj = k_m \sum_{j=1}^3 a_j \delta mj= \sum_{j=1}^3 a_m k_m</math>
:<math>\hat v \cdot \hat b_m= \sum_{j=1}^3 a_j \hat a_j \cdot \hat b_m = \sum_{j=1}^3 a_j \underbrace{(\hat a_j \cdot \hat b_m )}_{proj of \hat a_j on \hat b_m} = \sum_{j=1}^3 a_j k_m \delta mj = k_m \sum_{j=1}^3 a_j \delta mj= \sum_{j=1}^3 a_m k_m</math>

Revision as of 15:03, 9 November 2008

Vectors & Functions

  • How to related the vector v to the sampling?

We could sample a continuous function every T seconds, creating a "bar graph".

  • Where is a rectangle 1 unit high and T units wide

In an effort to make this more exact, will will continue to shrink the rectangle down to the Dirac Delta function,

By using the Dirac Delta function the summation becomes an integral

Changing from one orthogonal Basis Functions to another

If you have a vector and wish to change it to