10/3,6 - The Game: Difference between revisions
Jump to navigation
Jump to search
Line 39: | Line 39: | ||
= \underbrace{\left (\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(u)\, du \right )}_{eigenvalue} \underbrace{e^{j2\pi \omega_nt}}_{eigenfunction}</math> |
= \underbrace{\left (\int_{-\infty}^{\infty} e^{-j2\pi \omega_nu} h(u)\, du \right )}_{eigenvalue} \underbrace{e^{j2\pi \omega_nt}}_{eigenfunction}</math> |
||
*Let <math> t-\lambda = u \,\!</math> thus <math> du = -d\lambda \,\!</math> |
*Let <math> t-\lambda = u \,\!</math> thus <math> du = -d\lambda \,\!</math> |
||
* |
*The order of integration switched due to changing from <math>-\lambda = u\,\!</math> |
||
*Explain the rest of the page |
*Explain the rest of the page |
Revision as of 16:11, 12 November 2008
The Game
The idea behind the game is to use linearity (superposition and proportionality) and time invariance to find an output for a given input. An initial input and output are given.
Input | LTI System | Output | Reason |
Given | |||
Time Invarience | |||
Proportionality | |||
Superposition |
With the derived equation, note that you can put in any to find the given output. Just change your t for a lambda and plug n chug.
Example
Let
- Let thus
- The order of integration switched due to changing from
- Explain the rest of the page