10/3,6 - The Game: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 49: | Line 49: | ||
|- | |- | ||
| | | | ||
|<math>=\left \langle h \mid e^{j \omega_n u} \right \rangle e^{j \omega_n t}</math> | |<math>=\left \langle h(u) \mid e^{j \omega_n u} \right \rangle e^{j \omega_n t}</math> | ||
|Different notation | |Different notation | ||
|- | |- | ||
Line 58: | Line 58: | ||
==Example 2== | ==Example 2== | ||
Let <math> x(t) = x(t+T)=\sum_{n=-\infty}^{\infty} \alpha_n e^{j2\pi nt/T} </math> | Let <math> x(t) = x(t+T)=\sum_{n=-\infty}^{\infty} \alpha_n e^{j2\pi nt/T} = \sum_{n=-\infty}^{\infty} \alpha_n e^{j \omega_n t}</math> | ||
{| border="0" cellpadding="0" cellspacing="0" | {| border="0" cellpadding="0" cellspacing="0" | ||
|- | |- | ||
|<math>\sum_{n=-\infty}^{\infty} \alpha_n e^{ | |<math>\sum_{n=-\infty}^{\infty} \alpha_n e^{j \omega_n t}</math> | ||
|<math>=\sum_{n=-\infty}^{\infty} \alpha_n H( | |<math>=\sum_{n=-\infty}^{\infty} \alpha_n H(\omega_n)e^{j \omega_n t}</math> | ||
|From Example 1 | |From Example 1 | ||
|- | |- | ||
| | | | ||
|<math>=n^ | |<math>=\sum_{n=-\infty}^{\infty} \frac {1}{T} \left \langle x(t) \mid e^{j\omega_n t}\right \rangle | ||
| | \left \langle h(u) \mid e^{j \omega_n u}\right \rangle e^{j \omega_n t}</math> | ||
|Different notation | |||
|} | |} | ||
Latest revision as of 00:04, 14 November 2008
The Game
The idea behind the game is to use linearity (superposition and proportionality) and time invariance to find an output for a given input. An initial input and output are given.
Input | LTI System | Output | Reason |
Given | |||
Time Invarience | |||
Proportionality | |||
Superposition |
With the derived equation, note that you can put in any to find the given output. Just change your t for a lambda and plug n chug.
Example 1
Let
Let thus | ||
The order of integration switched due to changing from | ||
Different notation | ||
Different notation |
Example 2
Let
From Example 1 | ||
Different notation |
Questions
- How do eigenfunction and basisfunctions differ?
- Eigenfunctions will "point" in the same direction after going through the LTI system. It may (probably) have a different coefficient however. Very convenient.