HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
No edit summary
Fonggr (talk | contribs)
Line 15: Line 15:
|-
|-
|
|
|<math>=\delta(\omega_0-\omega)\,\!</math>
|<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} e^{j (\omega_0-\omega) t}dt \right ]</math>
|-
|
|<math>=2\pi \delta(\omega_0-\omega)\,\!</math>
|-
|-
|<math>F[\cos {\omega_0 t}]\,\!</math>
|<math>F[\cos {\omega_0 t}]\,\!</math>

Revision as of 18:21, 17 November 2008

Find the following Fourier Transforms

  • F[ejω0t]
  • F[cosω0t]
  • F[αnej2πnt/T]
  • F[sinω0t]

Solutions

F[ejω0t] =ejω0tejωtdt
=ej(ω0ω)tdt
=2π[12πej(ω0ω)tdt]
=2πδ(ω0ω)
F[cosω0t] =ejω0t+ejω0t2ejωtdt
=12(ejω0t+ejω0t)2ejωtdt
=122ej(ω0ω)t+2ej(ω0+ω)tdt
=ej(ω0ω)t+ej(ω0+ω)t
=δ(ω0ω)+δ(ω0+ω)
F[sinω0t] =ejω0tejω0t2jejωtdt