HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
Fonggr (talk | contribs)
Line 27: Line 27:
|-
|-
|
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} 2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t} dt</math>
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t}\right ] dt</math>
|-
|-
|
|
|<math>=\int_{-\infty}^{\infty} e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}</math>
|<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|-
|-
|
|
|<math>=\delta(\omega_0-\omega) + \delta(\omega_0+\omega)\,\!</math>
|<math>=2\pi\delta(\omega_0-\omega) + 2\pi\delta(\omega_0+\omega)\,\!</math>
|-
|-
|<math>F[\sin{\omega_0 t}]\,\!</math>
|<math>F[\sin{\omega_0 t}]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math>
|}
|}

Revision as of 00:25, 18 November 2008

Find the following Fourier Transforms

  • F[ejω0t]
  • F[cosω0t]
  • F[αnej2πnt/T]
  • F[sinω0t]

Solutions

F[ejω0t] =ejω0tejωtdt
=ej(ω0ω)tdt
=2π[12πej(ω0ω)tdt]
=2πδ(ω0ω)
F[cosω0t] =ejω0t+ejω0t2ejωtdt
=12(ejω0t+ejω0t)2ejωtdt
=12[2ej(ω0ω)t+2ej(ω0+ω)t]dt
=2π[12π(ej(ω0ω)t+ej(ω0+ω)t)dt]
=2πδ(ω0ω)+2πδ(ω0+ω)
F[sinω0t] =ejω0tejω0t2jejωtdt