HW 05: Difference between revisions
Jump to navigation
Jump to search
Line 27: | Line 27: | ||
|- | |- | ||
| | | | ||
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} 2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t} dt</math> | |<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t}\right ] dt</math> | ||
|- | |- | ||
| | | | ||
|<math>=\int_{-\infty}^{\infty} e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}</math> | |<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math> | ||
|- | |- | ||
| | | | ||
|<math>=\delta(\omega_0-\omega) + \delta(\omega_0+\omega)\,\!</math> | |<math>=2\pi\delta(\omega_0-\omega) + 2\pi\delta(\omega_0+\omega)\,\!</math> | ||
|- | |- | ||
|<math>F[\sin{\omega_0 t}]\,\!</math> | |<math>F[\sin{\omega_0 t}]\,\!</math> | ||
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math> | |<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math> | ||
|} | |} |
Revision as of 00:25, 18 November 2008
Find the following Fourier Transforms