HW 05: Difference between revisions
Jump to navigation
Jump to search
Line 37: | Line 37: | ||
|<math>F[\sin{\omega_0 t}]\,\!</math> | |<math>F[\sin{\omega_0 t}]\,\!</math> | ||
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math> | |<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math> | ||
|- | |||
| | |||
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right )2je^{-j \omega t} dt</math> | |||
|- | |||
| | |||
|<math>=\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math> | |||
|- | |||
| | |||
|<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math> | |||
|- | |||
| | |||
|<math>=2\pi\delta(\omega_0-\omega) - 2\pi\delta(\omega_0+\omega)\,\!</math> | |||
|} | |} |
Revision as of 00:37, 18 November 2008
Find the following Fourier Transforms