HW 05: Difference between revisions
Jump to navigation
Jump to search
Line 24: | Line 24: | ||
|- | |- | ||
| | | | ||
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right ) | |<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math> | ||
|- | |- | ||
| | | | ||
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [ | |<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right ] dt</math> | ||
|- | |- | ||
| | | | ||
|<math>= | |<math>=\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math> | ||
|- | |- | ||
| | | | ||
|<math>= | |<math>=\pi\delta(\omega_0-\omega) + \pi\delta(\omega_0+\omega)\,\!</math> | ||
|- | |- | ||
|<math>F[\sin{\omega_0 t}]\,\!</math> | |<math>F[\sin{\omega_0 t}]\,\!</math> | ||
Line 39: | Line 39: | ||
|- | |- | ||
| | | | ||
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right ) | |<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math> | ||
|- | |- | ||
| | | | ||
|<math>=\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math> | |<math>=\frac{1}{2j}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math> | ||
|- | |- | ||
| | | | ||
|<math>= | |<math>=\frac{\pi}{j}\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math> | ||
|- | |- | ||
| | | | ||
|<math>= | |<math>=-j\pi\delta(\omega_0-\omega) + j\pi\delta(\omega_0+\omega)\,\!</math> | ||
|- | |- | ||
|<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> | |<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> |
Revision as of 17:03, 23 November 2008
Find the following Fourier Transforms
Solutions
Is the last problem done correctly?