HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Fonggr (talk | contribs)
No edit summary
Fonggr (talk | contribs)
No edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
Find the following Fourier Transforms
Find the following Fourier Transforms
*<math>F[e^{j \omega_0 t}]</math>
*<math>F\left[e^{j \omega_0 t}\right]</math>
*<math>F[\cos {\omega_0 t}]\,\!</math>
*<math>F\left[\cos {\omega_0 t}\right]\,\!</math>
*<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math>
*<math>F\left[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}\right]</math>
*<math>F[\sin{\omega_0 t}]\,\!</math>
*<math>F\left[\sin{\omega_0 t}\right]\,\!</math>


==Solutions==
==Solutions==
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|-
|-
|<math>F[e^{j \omega_0 t}]</math>
|<math>F\left[e^{j \omega_0 t}\right]</math>
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math>
|-
|-
Line 15: Line 15:
|-
|-
|
|
|<math>=\delta(\omega_0-\omega)\,\!</math>
|<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} e^{j (\omega_0-\omega) t}dt \right ]</math>
|-
|-
|<math>F[\cos {\omega_0 t}]\,\!</math>
|
|<math>=2\pi \delta(\omega_0-\omega)\,\!</math>
|-
|<math>F\left[\cos {\omega_0 t}\right]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math>
|-
|-
|
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )2e^{-j \omega t} dt</math>
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math>
|-
|-
|
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} 2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t} dt</math>
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right ] dt</math>
|-
|-
|
|
|<math>=\int_{-\infty}^{\infty} e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}</math>
|<math>=\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|-
|-
|
|
|<math>=\delta(\omega_0-\omega) + \delta(\omega_0+\omega)\,\!</math>
|<math>=\pi\delta(\omega_0-\omega) + \pi\delta(\omega_0+\omega)\,\!</math>
|-
|-
|<math>F[\sin{\omega_0 t}]\,\!</math>
|<math>F\left[\sin{\omega_0 t}\right]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math>
|-
|
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math>
|-
|
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math>
|-
|
|<math>=\frac{\pi}{j}\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|-
|
|<math>=-j\pi\delta(\omega_0-\omega) + j\pi\delta(\omega_0+\omega)\,\!</math>
|-
|<math>F\left[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}\right]</math>
|<math>=\int_{-\infty}^{\infty} \left (\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T} \right )e^{-j \omega t}dt</math>
|-
|
|<math>=\sum_{-\infty}^{\infty}\alpha_n \left (\int_{-\infty}^{\infty} e^{j2\pi nt/T} e^{-j2\pi ft}dt\right )</math>
|-
|
|<math>=\sum_{-\infty}^{\infty}\alpha_n \left (\int_{-\infty}^{\infty} e^{j2\pi t (\frac{n}{T}-f)} dt\right )</math>
|-
|
|<math>=\sum_{-\infty}^{\infty}\alpha_n \delta\left(\frac{n}{T}-f\right) </math>
|}
|}

Latest revision as of 21:27, 23 November 2008

Find the following Fourier Transforms

  • F[ejω0t]
  • F[cosω0t]
  • F[αnej2πnt/T]
  • F[sinω0t]

Solutions

F[ejω0t] =ejω0tejωtdt
=ej(ω0ω)tdt
=2π[12πej(ω0ω)tdt]
=2πδ(ω0ω)
F[cosω0t] =ejω0t+ejω0t2ejωtdt
=12(ejω0t+ejω0t)ejωtdt
=12[ej(ω0ω)t+ej(ω0+ω)t]dt
=π[12π(ej(ω0ω)t+ej(ω0+ω)t)dt]
=πδ(ω0ω)+πδ(ω0+ω)
F[sinω0t] =ejω0tejω0t2jejωtdt
=12j(ejω0tejω0t)ejωtdt
=12j(ej(ω0ω)tej(ω0+ω)t)dt
=πj[12π(ej(ω0ω)tej(ω0+ω)t)dt]
=jπδ(ω0ω)+jπδ(ω0+ω)
F[αnej2πnt/T] =(αnej2πnt/T)ejωtdt
=αn(ej2πnt/Tej2πftdt)
=αn(ej2πt(nTf)dt)
=αnδ(nTf)