HW 05: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Find the following Fourier Transforms |
Find the following Fourier Transforms |
||
*<math>F[e^{j \omega_0 t}]</math> |
*<math>F\left[e^{j \omega_0 t}\right]</math> |
||
*<math>F[\cos {\omega_0 t}]\,\!</math> |
*<math>F\left[\cos {\omega_0 t}\right]\,\!</math> |
||
*<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math> |
*<math>F\left[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}\right]</math> |
||
*<math>F[\sin{\omega_0 t}]\,\!</math> |
*<math>F\left[\sin{\omega_0 t}\right]\,\!</math> |
||
==Solutions== |
==Solutions== |
||
{| border="0" cellpadding="0" cellspacing="0" |
{| border="0" cellpadding="0" cellspacing="0" |
||
|- |
|- |
||
|<math>F[e^{j \omega_0 t}]</math> |
|<math>F\left[e^{j \omega_0 t}\right]</math> |
||
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math> |
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math> |
||
|- |
|- |
||
Line 20: | Line 20: | ||
|<math>=2\pi \delta(\omega_0-\omega)\,\!</math> |
|<math>=2\pi \delta(\omega_0-\omega)\,\!</math> |
||
|- |
|- |
||
|<math>F[\cos {\omega_0 t}]\,\!</math> |
|<math>F\left[\cos {\omega_0 t}\right]\,\!</math> |
||
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math> |
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right ) |
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} |
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right ] dt</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\int_{-\infty}^{\infty} e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}</math> |
|<math>=\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math> |
||
|- |
|- |
||
| |
| |
||
|<math>=\delta(\omega_0-\omega) + \delta(\omega_0+\omega)\,\!</math> |
|<math>=\pi\delta(\omega_0-\omega) + \pi\delta(\omega_0+\omega)\,\!</math> |
||
|- |
|- |
||
|<math>F[\sin{\omega_0 t}]\,\!</math> |
|<math>F\left[\sin{\omega_0 t}\right]\,\!</math> |
||
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math> |
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math> |
||
|- |
|||
| |
|||
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math> |
|||
|- |
|||
| |
|||
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math> |
|||
|- |
|||
| |
|||
|<math>=\frac{\pi}{j}\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math> |
|||
|- |
|||
| |
|||
|<math>=-j\pi\delta(\omega_0-\omega) + j\pi\delta(\omega_0+\omega)\,\!</math> |
|||
|- |
|||
|<math>F\left[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}\right]</math> |
|||
|<math>=\int_{-\infty}^{\infty} \left (\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T} \right )e^{-j \omega t}dt</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_{-\infty}^{\infty}\alpha_n \left (\int_{-\infty}^{\infty} e^{j2\pi nt/T} e^{-j2\pi ft}dt\right )</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_{-\infty}^{\infty}\alpha_n \left (\int_{-\infty}^{\infty} e^{j2\pi t (\frac{n}{T}-f)} dt\right )</math> |
|||
|- |
|||
| |
|||
|<math>=\sum_{-\infty}^{\infty}\alpha_n \delta\left(\frac{n}{T}-f\right) </math> |
|||
|} |
|} |
Latest revision as of 20:27, 23 November 2008
Find the following Fourier Transforms