HW 05: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
Find the following Fourier Transforms
Find the following Fourier Transforms
*<math>F[e^{j \omega_0 t}]</math>
*<math>F\left[e^{j \omega_0 t}\right]</math>
*<math>F[\cos {\omega_0 t}]\,\!</math>
*<math>F\left[\cos {\omega_0 t}\right]\,\!</math>
*<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math>
*<math>F\left[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}\right]</math>
*<math>F[\sin{\omega_0 t}]\,\!</math>
*<math>F\left[\sin{\omega_0 t}\right]\,\!</math>


==Solutions==
==Solutions==
{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|-
|-
|<math>F[e^{j \omega_0 t}]</math>
|<math>F\left[e^{j \omega_0 t}\right]</math>
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty} e^{j \omega_0 t} e^{-j \omega t}dt</math>
|-
|-
Line 20: Line 20:
|<math>=2\pi \delta(\omega_0-\omega)\,\!</math>
|<math>=2\pi \delta(\omega_0-\omega)\,\!</math>
|-
|-
|<math>F[\cos {\omega_0 t}]\,\!</math>
|<math>F\left[\cos {\omega_0 t}\right]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2} e^{-j \omega t}dt</math>
|-
|-
|
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )2e^{-j \omega t} dt</math>
|<math>=\frac{1}{2}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} + e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math>
|-
|-
|
|
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [2e^{j(\omega_0-\omega) t} + 2e^{-j(\omega_0+\omega) t}\right ] dt</math>
|<math>=\frac{1}{2}\int_{-\infty}^{\infty} \left [e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right ] dt</math>
|-
|-
|
|
|<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|<math>=\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} + e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|-
|-
|
|
|<math>=2\pi\delta(\omega_0-\omega) + 2\pi\delta(\omega_0+\omega)\,\!</math>
|<math>=\pi\delta(\omega_0-\omega) + \pi\delta(\omega_0+\omega)\,\!</math>
|-
|-
|<math>F[\sin{\omega_0 t}]\,\!</math>
|<math>F\left[\sin{\omega_0 t}\right]\,\!</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty}\frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} e^{-j \omega t}dt</math>
|-
|-
|
|
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right )2je^{-j \omega t} dt</math>
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty}\left (e^{j\omega_0 t} - e^{-j\omega_0 t}\right )e^{-j \omega t} dt</math>
|-
|-
|
|
|<math>=\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math>
|<math>=\frac{1}{2j}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right ) dt</math>
|-
|-
|
|
|<math>=2\pi\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|<math>=\frac{\pi}{j}\left [ \frac{1}{2\pi}\int_{-\infty}^{\infty} \left (e^{j(\omega_0-\omega) t} - e^{-j(\omega_0+\omega) t}\right )\,dt\right]</math>
|-
|-
|
|
|<math>=2\pi\delta(\omega_0-\omega) - 2\pi\delta(\omega_0+\omega)\,\!</math>
|<math>=-j\pi\delta(\omega_0-\omega) + j\pi\delta(\omega_0+\omega)\,\!</math>
|-
|-
|<math>F[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}]</math>
|<math>F\left[\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T}\right]</math>
|<math>=\int_{-\infty}^{\infty} \left (\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T} \right )e^{-j \omega t}dt</math>
|<math>=\int_{-\infty}^{\infty} \left (\sum_{-\infty}^{\infty}\alpha_n e^{j2\pi nt/T} \right )e^{-j \omega t}dt</math>
|-
|-
Line 57: Line 57:
|-
|-
|
|
||<math>=\sum_{-\infty}^{\infty}\alpha_n \left (\int_{-\infty}^{\infty} e^{j2\pi t (\frac{n}{T}-f)} dt\right )</math>
|<math>=\sum_{-\infty}^{\infty}\alpha_n \left (\int_{-\infty}^{\infty} e^{j2\pi t (\frac{n}{T}-f)} dt\right )</math>
|-
|
|<math>=\sum_{-\infty}^{\infty}\alpha_n \delta\left(\frac{n}{T}-f\right) </math>
|}
|}
*Think something went wrong here.

Latest revision as of 20:27, 23 November 2008

Find the following Fourier Transforms

Solutions