HW 06: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
(→Proof) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
Figure out why <math>\int_{0}^{\infty} \cos(2\pi\,f\,u)\,du</math> seems to equal an imaginary odd function of frequency, but there is no j. |
Figure out why <math>\int_{0}^{\infty} \cos(2\pi\,f\,u)\,du</math> seems to equal an imaginary odd function of frequency, but there is no j. |
||
== |
==Background== |
||
This is the incorrect solution derived in class. Cosine is incorrect, because a real odd function of time, <math>\sgn(t)\,\!</math>,should map to an imaginary odd function of frequency. |
|||
===Proof=== |
|||
{| border="0" cellpadding="0" cellspacing="0" |
|||
|- |
|||
|<math>F[o(t)]\,\!</math> |
|||
|<math>=\int_{-\infty}^{\infty}\,o(t)\,e^{-j\,2\,\pi\,f\,t}\,dt</math> |
|||
|- |
|||
| |
|||
|<math>=\int_{-\infty}^{\infty}\,o(t)\,\left[\cos(2\,\pi\,f\,t)+j\,\sin(2\,\pi\,f\,t)\right]\,dt</math> |
|||
|Euler's identity |
|||
|- |
|||
| |
|||
|<math>=\int_{-\infty}^{\infty}\,o(t)\,j\,\sin(2\,\pi\,f\,t)\,dt</math> |
|||
|Even function integrates out over symmetric limits |
|||
|- |
|||
| |
|||
|<math>=\int_{-\infty}^{\infty}\,\left[\mbox{Im }e(t) \mbox{ and an Im }o(f)\right]\,dt</math> |
|||
|- |
|||
| |
|||
|<math>=\mbox{Im }o(f)\,\!</math> |
|||
|Time integrates out |
|||
|} |
|||
*The odd function of time has no component (ie. 0) of frequency. Thus it is an even function in frequency. |
|||
===Functions=== |
|||
*Even*Even=Even |
|||
*Odd*Odd=Even |
|||
*Odd*Even=Odd |
|||
==Incorrect Solution derived in class== |
|||
{| border="0" cellpadding="0" cellspacing="0" |
|||
|- |
|||
|<math>F\left[\frac{\sgn (t)}{2}\right]</math> |
|||
|<math>=\int_{-\infty}^{\infty} \frac{\sgn (t)}{2} e^{-j\,2\,\pi\,f\,t}\,dt</math> |
|||
|- |
|||
| |
|||
|<math>=\frac{1}{2}\left[\int_{-\infty}^{0} -1\cdot e^{-j\,2\,\pi\,f\,t}\,dt+\int_{0}^{\infty} 1\cdot e^{-j\,2\,\pi\,f\,t}\,dt\right]</math> |
|||
|- |
|||
| |
|||
|<math>=\underbrace{\frac{1}{2}\int_{0}^{-\infty} e^{j\,2\,\pi\,f\,u}\,du}_{\begin{matrix}u=-t \\ du=-dt\end{matrix}}+\underbrace{\frac{1}{2}\int_{0}^{\infty} e^{-j\,2\,\pi\,f\,u}\,du}_{\begin{matrix}u=t \\ du=dt\end{matrix}}</math> |
|||
|- |
|||
| |
|||
|<math>=\int_{0}^{-\infty} \frac{e^{j\,2\,\pi\,f\,u} + e^{-j\,2\,\pi\,f\,u}}{2}\,du</math> |
|||
|- |
|||
| |
|||
|<math>=\int_{0}^{-\infty} \cos(2\,\pi\,f\,u)\,du</math> |
|||
|} |
|||
==Correct Solution== |
|||
{| border="0" cellpadding="0" cellspacing="0" |
{| border="0" cellpadding="0" cellspacing="0" |
||
|- |
|- |
Latest revision as of 15:38, 3 December 2008
Problem
Figure out why seems to equal an imaginary odd function of frequency, but there is no j.
Background
This is the incorrect solution derived in class. Cosine is incorrect, because a real odd function of time, ,should map to an imaginary odd function of frequency.
Proof
Euler's identity | ||
Even function integrates out over symmetric limits | ||
Time integrates out |
- The odd function of time has no component (ie. 0) of frequency. Thus it is an even function in frequency.
Functions
- Even*Even=Even
- Odd*Odd=Even
- Odd*Even=Odd