Something interesting from class - HW2: Difference between revisions
Jump to navigation
Jump to search
Max.Woesner (talk | contribs) No edit summary |
Max.Woesner (talk | contribs) mNo edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Max Woesner == |
== Max Woesner == |
||
[[Max Woesner|Back to my Home Page]] |
|||
=== Homework #2 - Something interesting from class === |
=== Homework #2 - Something interesting from class === |
||
<br> |
|||
This page is under development |
|||
The <b>Linear Time Invariant System Game</b> can be used to help us understand the impulse response of a linear time invariant system. |
|||
<table border=1> |
|||
<tr> |
|||
<td><b>Input<math>-----\longrightarrow\,\!</math></b></td> |
|||
<td><b>Linear Time Invariant System</b></td> |
|||
<td><b><math>\longrightarrow\,\!</math>Output</b></td> |
|||
<td><b>Reason</b></td> |
|||
</tr> |
|||
<tr> |
|||
<td><math>\delta (t) \!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>h(t)\!</math></td> |
|||
<td>Given</td> |
|||
</tr> |
|||
<tr> |
|||
<td><math>\delta (t-t_0)\!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>h(t-t_0)\!</math></td> |
|||
<td>Time Invariance</td> |
|||
</tr> |
|||
<tr> |
|||
<td><math>x(t_0)\delta (t-t_0)\!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>x(t_0)h(t-t_0)\!</math></td> |
|||
<td>Proportionality</td> |
|||
<tr> |
|||
<td><math>\int_{-\infty}^{\infty} x(t_0)\delta\ (t-t_0)dt_0\!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>\int_{-\infty}^{\infty} x(t_0)h(t-t_0)dt_0\!</math></td> |
|||
<td>Superposition</td> |
|||
</tr> |
|||
</table> |
|||
<br> |
|||
where <math>\int_{-\infty}^{\infty} x(t_0)\delta\ (t-t_0)dt_0 = x(t)\!</math> <b> for any <math> x(t)\!</math></b> and <math>\int_{-\infty}^{\infty} x(t_0)h(t-t_0)dt_0\!</math> is the <b> convolution integral.</b><br> |
|||
We can expand the game further. |
|||
<table border=1> |
|||
<tr> |
|||
<td><b>Input<math>-----\longrightarrow\,\!</math></b></td> |
|||
<td><b>Linear Time Invariant System</b></td> |
|||
<td><b><math>\longrightarrow\,\!</math>Output</b></td> |
|||
<td><b>Reason</b></td> |
|||
</tr> |
|||
<tr> |
|||
<td><math>\delta (t) \!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>h(t)\!</math></td> |
|||
<td>Given</td> |
|||
</tr> |
|||
<tr> |
|||
<td><math>\delta (t-t_0)\!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>h(t-t_0)\!</math></td> |
|||
<td>Time Invariance</td> |
|||
</tr> |
|||
<tr> |
|||
<td><math>x(t_0)\delta\ (t-t_0)\!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>x(t_0)h(t-t_0)\!</math></td> |
|||
<td>Proportionality</td> |
|||
<tr> |
|||
<td><math>x(t)\!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>\int_{-\infty}^{\infty} x(t_0)h(t-t_0)dt_0\!</math></td> |
|||
<td>Superposition</td> |
|||
</tr> |
|||
<tr> |
|||
<td><math>e^{j2\pi ft}\!</math></td> |
|||
<td><math>-------\longrightarrow\,\!</math></td> |
|||
<td><math>\int_{-\infty}^{\infty} e^{j2\pi ft_0}h(t-t_0)dt_0\!</math></td> |
|||
<td>Superposition</td> |
|||
</tr> |
|||
</table> |
|||
<br> |
|||
Let <math>\lambda\ = t-t_0</math>, so <math>t_0 = t-\lambda\ </math> and <math>dt_0 = -d\lambda\ </math><br> |
|||
Therefore <math>\int_{-\infty}^{\infty} e^{j2\pi ft_0}h(t-t_0)dt_0 = \int_{+\infty}^{-\infty} h(\lambda)e^{j2\pi f(t-\lambda)}(-d\lambda) = e^{j2\pi ft}\int_{-\infty}^{\infty} h(\lambda)e^{-j2\pi f\lambda}d\lambda\!</math><br> |
|||
This tells us that <math>e^{j2\pi ft}\!</math> is the eigenfunction and <math>\int_{-\infty}^{\infty} h(\lambda)e^{-j2\pi f\lambda}d\lambda\!</math> is the eigenvalue of <b>all linear time invariant systems.</b><br> |
|||
This amazing conclusion makes solving linear time invariant systems (the only systems we are really able to solve) so much simpler that we usually approximate real-world nonlinear problems as linear systems so we can solve them.<br> |
Latest revision as of 07:46, 8 October 2009
Max Woesner
Homework #2 - Something interesting from class
The Linear Time Invariant System Game can be used to help us understand the impulse response of a linear time invariant system.
Input | Linear Time Invariant System | Output | Reason |
Given | |||
Time Invariance | |||
Proportionality | |||
Superposition |
where for any and is the convolution integral.
We can expand the game further.
Input | Linear Time Invariant System | Output | Reason |
Given | |||
Time Invariance | |||
Proportionality | |||
Superposition | |||
Superposition |
Let , so and
Therefore
This tells us that is the eigenfunction and is the eigenvalue of all linear time invariant systems.
This amazing conclusion makes solving linear time invariant systems (the only systems we are really able to solve) so much simpler that we usually approximate real-world nonlinear problems as linear systems so we can solve them.