Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
(New page: ====Max Woesner==== Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br> Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{...)
 
No edit summary
Line 1: Line 1:
====Max Woesner====
[[Max Woesner|<b>Max Woesner</b>]]<br>
Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>
Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>

Revision as of 17:14, 15 October 2009

Max Woesner
Find
Recall , so
Also recall ,so
Now
So