Fourier Transform Properties: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
Max.Woesner (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br> |
[[Max Woesner|<b><u>Max Woesner</u></b>]]<br><br> |
||
Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br> |
'''Find <math>\mathcal{F}[cos(w_0t)g(t)]\!</math><br>''' |
||
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br> |
Recall <math> w_0 = 2\pi f_0\!</math>, so <math>\mathcal{F}[cos(w_0t)g(t)] = \mathcal{F}[cos(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br> |
||
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br> |
Also recall <math> cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})\!</math>,so <math>\int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br> |
Revision as of 20:29, 17 October 2009
Max Woesner
Find
Recall , so
Also recall ,so
Now
So
Nick Christman
Find
To begin, we know that
But recall that
Because of this definition, our problem has now been simplified significantly:
Therefore,