Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:


----
----

[[Joshua Sarris|<b><u>Joshua Ssarris</u></b>]]<br><br>
'''Find <math>\mathcal{F}[sin(w_0t)g(t)]\!</math><br>'''


Recall
<math> w_0 = 2\pi f_0\!</math>,

so expanding we have,

<math>\mathcal{F}[sin(w_0t)g(t)] = \mathcal{F}[sin(2\pi f_0t)g(t)] = \int_{-\infty}^{\infty}cos(2\pi f_0t)g(t)e^{-j2\pi ft}dt\!</math><br>

Also recall
<math> sin(\theta) = \frac{1}{j2}(e^{j\theta} + e^{-j\theta})\!</math>,

so we can convert to exponentials.

<math>\int_{-\infty}^{\infty}sin(2\pi f_0t)g(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt\!</math><br>

Now integrating gives us,

<math>\int_{-\infty}^{\infty} \frac{1}{j2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{j2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{j2}G(f-f_0)+ \frac{1}{j2}G(f+f_0)\!</math><br>


So we now have the identity,

<math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{j2}[G(f-f_0)+ G(f+f_0)]\!</math>

orr rather

<math>\mathcal{F}[cos(w_0t)g(t)] =\frac{1}{2}j[G(f-f_0)- G(f+f_0)]\!</math>

Revision as of 17:07, 18 October 2009

Max Woesner

Find
Recall , so
Also recall ,so
Now
So


Nick Christman

Find

To begin, we know that

But recall that


Because of this definition, our problem has now been simplified significantly:


Therefore,



Joshua Ssarris

Find


Recall ,

so expanding we have,


Also recall ,

so we can convert to exponentials.


Now integrating gives us,



So we now have the identity,

orr rather