Laplace transforms: Critically Damped Motion: Difference between revisions
Jump to navigation
Jump to search
Mark.bernet (talk | contribs) |
Mark.bernet (talk | contribs) |
||
Line 61: | Line 61: | ||
<math>\text {So there you have it the equation of a Critically Damped spring mass system.}\,</math> |
<math>\text {So there you have it the equation of a Critically Damped spring mass system.}\,</math> |
||
==Apply the Initial and Final Value Theorems to find the initial and final values== |
|||
:Initial Value Theorem |
|||
::<math>\lim_{s\rightarrow \infty} sF(s)=f(0)\,</math> |
|||
:Final Value Theorem |
|||
::<math>\lim_{s\rightarrow 0} sF(s)=f(\infty)\,</math> |
|||
===Applying this to our problem=== |
|||
<math>\lim_{s\rightarrow \infty} \mathbf {X}(s)=-\frac{3}{(s+4)^2}\,</math> |
Revision as of 18:22, 22 October 2009
Using the Laplace Transform to solve a spring mass system that is critically damped
Problem Statement
An 8 pound weight is attached to a spring with a spring constant k of 4 lb/ft. The spring is stretched 2 ft and rests at its equilibrium position. It is then released from rest with an initial upward velocity of 3 ft/s. The system contains a damping force of 2 times the initial velocity.
Solution
Things we know
Solving the problem
Apply the Initial and Final Value Theorems to find the initial and final values
- Initial Value Theorem
- Final Value Theorem
Applying this to our problem