Evaluate this integral - HW1: Difference between revisions
Jump to navigation
Jump to search
Max.Woesner (talk | contribs) (New page: == Max Woesner == Back to my Home Page === Homework #1 - Evaluate this integral === Evaluate the integral <math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt\!</...) |
Max.Woesner (talk | contribs) No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
=== Homework #1 - Evaluate this integral === |
=== Homework #1 - Evaluate this integral === |
||
<br><b>Problem Statement</b><br> |
|||
Evaluate the integral <math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt\!</math><br> |
Evaluate the integral <math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt\!</math><br> |
||
<b>Solution</b><br> |
|||
For <math> n=m, \int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \int_{-\frac{T}{2}}^{\frac{T}{2}}1 dt = T \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{T}{2} - \frac{-T}{2} = T \!</math><br> |
For <math> n=m, \int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \int_{-\frac{T}{2}}^{\frac{T}{2}}1 dt = T \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{T}{2} - \frac{-T}{2} = T \!</math><br> |
||
For <math> n\neq m,\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \frac{e^{j2 \pi (n-m)t/T}}{\frac{j2 \pi (n-m)}{T}} \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{e^{j \pi (n-m)} - e^{-j \pi (n-m)}}{\frac{j2 \pi (n-m)}{T}} = 0 \!</math><br> |
For <math> n\neq m,\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \frac{e^{j2 \pi (n-m)t/T}}{\frac{j2 \pi (n-m)}{T}} \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{e^{j \pi (n-m)} - e^{-j \pi (n-m)}}{\frac{j2 \pi (n-m)}{T}} = 0 \!</math><br> |
||
So, <math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \begin{cases} T, & \mbox{for }n=m \\ 0, & \mbox{for }n\neq m \end{cases}\!</math><br><br> |
|||
Alternate method: <br> |
|||
<math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \int_{-\frac{T}{2}}^{\frac{T}{2}}[cos(2 \pi (n-m)t/T)+jsin(2 \pi (n-m)t/T)]dt\!</math><br> |
|||
For <math> n=m, \int_{-\frac{T}{2}}^{\frac{T}{2}}[cos(2 \pi (n-m)t/T)+jsin(2 \pi (n-m)t/T)]dt = \int_{-\frac{T}{2}}^{\frac{T}{2}}1 dt = T \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{T}{2} - \frac{-T}{2} = T \!</math><br> |
|||
For <math> n\neq m,\int_{-\frac{T}{2}}^{\frac{T}{2}}[cos(2 \pi (n-m)t/T)+jsin(2 \pi (n-m)t/T)]dt = 0\!</math><br> |
|||
So, <math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \begin{cases} T, & \mbox{for }n=m \\ 0, & \mbox{for }n\neq m \end{cases}\!</math> |
So, <math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \begin{cases} T, & \mbox{for }n=m \\ 0, & \mbox{for }n\neq m \end{cases}\!</math> |
Latest revision as of 15:31, 28 October 2009
Max Woesner
Homework #1 - Evaluate this integral
Problem Statement
Evaluate the integral
Solution
For
For
So,
Alternate method:
For
For
So,