Evaluate this integral - HW1: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 3: Line 3:


=== Homework #1 - Evaluate this integral ===
=== Homework #1 - Evaluate this integral ===

<br><b>Problem Statement</b><br>


Evaluate the integral <math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt\!</math><br>
Evaluate the integral <math>\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt\!</math><br>

<b>Solution</b><br>
For <math> n=m, \int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \int_{-\frac{T}{2}}^{\frac{T}{2}}1 dt = T \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{T}{2} - \frac{-T}{2} = T \!</math><br>
For <math> n=m, \int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \int_{-\frac{T}{2}}^{\frac{T}{2}}1 dt = T \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{T}{2} - \frac{-T}{2} = T \!</math><br>
For <math> n\neq m,\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \frac{e^{j2 \pi (n-m)t/T}}{\frac{j2 \pi (n-m)}{T}} \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{e^{j \pi (n-m)} - e^{-j \pi (n-m)}}{\frac{j2 \pi (n-m)}{T}} = 0 \!</math><br>
For <math> n\neq m,\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{j2 \pi (n-m)t/T}dt = \frac{e^{j2 \pi (n-m)t/T}}{\frac{j2 \pi (n-m)}{T}} \Bigg|_{\frac{-T}{2}}^{\frac{T}{2}} = \frac{e^{j \pi (n-m)} - e^{-j \pi (n-m)}}{\frac{j2 \pi (n-m)}{T}} = 0 \!</math><br>

Latest revision as of 15:31, 28 October 2009

Max Woesner

Back to my Home Page

Homework #1 - Evaluate this integral


Problem Statement

Evaluate the integral

Solution
For
For
So,

Alternate method:

For
For
So,