Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0)+ \frac{1}{2}G(f+f_0)\!</math><br>
Now <math>\int_{-\infty}^{\infty} \frac{1}{2}[e^{j2\pi f_0t}+e^{-j2\pi f_0t}]g(t)e^{-j2\pi ft}dt = \frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f-f_0)t}g(t)dt+\frac{1}{2}\int_{-\infty}^{\infty}e^{-j2\pi (f+f_0)t}g(t)dt = \frac{1}{2}G(f-f_0)+ \frac{1}{2}G(f+f_0)\!</math><br>
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br>
So <math>\mathcal{F}[cos(w_0t)g(t)] = \frac{1}{2}[G(f-f_0)+ G(f+f_0)]\!</math><br><br>


reviewed by [[Joshua Sarris]]


2. '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg]\!</math><br>'''
2. '''Find <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg]\!</math><br>'''
Recall <math> g(t)= \mathcal{F}^{-1}[G(f)] = \int_{-\infty}^{\infty}G(f)e^{j2\pi ft}df\!</math><br>
Recall <math> g(t)= \mathcal{F}^{-1}[G(f)] = \int_{-\infty}^{\infty}G(f)e^{j2\pi ft}df\!</math><br>

Revision as of 22:56, 28 October 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find
Recall , so
Also recall ,so
Now
So


reviewed by Joshua Sarris


2. Find
Recall
Similarly,
So
Now

Note that

So

Someone please review this!


Nick Christman

Find

To begin, we know that

But recall that


Because of this definition, our problem has now been simplified significantly:


Therefore,



Joshua Sarris

Find


Recall ,

so expanding we have,


Also recall ,

so we can convert to exponentials.


Now integrating gives us,



So we now have the identity,

or rather

Reviewed by Max