Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 30: Line 30:


<math>
<math>
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt]
\mathcal{F} \left[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt
</math>
</math>
<br/>
<br/>

After some factoring and combinting of like terms we get:
After some factoring and combinting of like terms we get:

<br/>
<br/>
<math>
<math>
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt]
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt
</math>
</math>
Line 49: Line 51:


<math>
<math>
\mathcal{F}[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt]
\mathcal{F}\left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)
</math>
</math>
Line 56: Line 58:
Therefore,
Therefore,


<math> \mathcal{F}[10^{t}g(t)e^{j2 \pi ft_0}] = 10^{t_0}g(t_0) </math>
<math> mathcal{F}\left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math>





Revision as of 12:39, 31 October 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find
Recall , so
Also recall ,so
Now
So


reviewed by Joshua Sarris


2. Find
Recall
Similarly,
So
Now

Note that

So

Reviewed by Nick Christman


Nick Christman

1. Find

To begin, we know that


After some factoring and combinting of like terms we get:



But recall that


Because of this definition (and some "math magic") our problem has been simplified significantly:


Therefore,


2.



Joshua Sarris

Find


Recall ,

so expanding we have,


Also recall ,

so we can convert to exponentials.


Now integrating gives us,



So we now have the identity,

or rather

Reviewed by Max