Fourier Transform Properties: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br>
So <math>\mathcal{F}\bigg[\int_{-\infty}^{\infty}g(t) h^*(t) dt\bigg] = \int_{-\infty}^{\infty}G(f)H^*(f)df \!</math><br><br>


"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary, but it helps the proof/identity look more complete. Good job!"
"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"


Example: <math>\int_{a1}^{a2}\int_{b1}^{b2}X(s')Y(s'') \delta (s''-s') \,ds' \,ds'' = \int_{a1}^{a2}X(s')Y(s') \,ds' </math>
Example: <math>\int_{a1}^{a2}\int_{b1}^{b2}X(s')Y(s'') \delta (s''-s') \,ds' \,ds'' = \int_{a1}^{a2}X(s')Y(s') \,ds' </math>

Revision as of 14:49, 31 October 2009

Some properties to choose from if you are having difficulty....

Max Woesner

1. Find
Recall , so
Also recall ,so
Now
So


reviewed by Joshua Sarris


2. Find
Recall
Similarly,
So
Now Failed to parse (SVG with PNG fallback (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}G(f^')e^{j2\pi f^'t}df^' \Bigg(\int_{-\infty}^{\infty}H(f^{''})e^{j2\pi f^{''}t}df^{''}\Bigg)^* dt = \int_{-\infty}^{\infty}G(f^')\int_{-\infty}^{\infty}H^*(f^{''})\int_{-\infty}^{\infty}e^{j2\pi (f^{''}-f^')t}dt df^{''} df^' \!}

Note that

So

"I was going to make a comment on the delta identity, but after looking at it closer I think it is fine. One comment I have is that you might consider adding one more step, showing the delta function in the integral and pulling the integrands together to make it look like a double integral -- it isn't necessary and I understood the transition, but it helps the proof/identity look a little more complete. Good job!"

Example:

Reviewed by Nick Christman


Nick Christman

Note: After scratching my head for a couple of hours, I decided that I would try a different Fourier Property. In fact, I chose a property that would need to be defined in order to show my second property.

1. Find

This is a fairly straightforward property and is known as complex modulation

Combining terms, we get:


Now let's make the following substitution

This now gives us a surprisingly familiar function:


This looks just like !

We can now conclude that:



PLEASE ENTER PEER REVIEW HERE



2. Find

-- Using the above definition of complex modulation and the definition from class of a time delay (a.k.a "the slacker function"), I will attempt to show a hybrid of the two...

By definition we know that:

Rearranging terms we get:


Now lets make the substitution .
This leads us to:

After some simplification and rearranging terms, we get:

Rearranging the terms yet again, we get:

We know that the exponential in terms of is simply a constant and because of the Fourier Property of complex modualtion, we finally get:


PLEASE ENTER PEER REVIEW HERE




Joshua Sarris

Find


Recall ,

so expanding we have,


Also recall ,

so we can convert to exponentials.


Now integrating gives us,



So we now have the identity,

or rather

Reviewed by Max