Homework Four: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:


[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
[[Nick Christman|<b><u>Nick Christman</u></b>]]<br><br>
1. '''Find <math>\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_{0}} \,dt \right] </math><br/>'''
1. '''Find <math>\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] </math><br/>'''


To begin, we know that<br/>
This is a fairly straightforward property and is known as ''complex modulation''<br/>


<math>  
<math>
\mathcal{F} \left[\int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]  
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = \int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt
= \int_{- \infty}^{\infty} \left( \int_{-\infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right) e^{-j2 \pi ft}\,dt
</math>
</math>
<br/>


After some factoring and combinting of like terms we get:  
Combining terms, we get:


<br/>
<math>
<math>
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
\int_{- \infty}^{\infty} \left[ g(t)e^{j2 \pi f_{0}t} \right] e^{-j2 \pi ft} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt
= \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} 10^{t}g(t) \,dt \right) e^{j2 \pi f(t_0-t)}\,dt
</math>
</math>
<br/>
<br/>


But recall that
Now let's make the following substitution <math> \displaystyle \theta = f-f_{0}</math>
<math>\int_{- \infty}^{\infty}e^{j2 \pi f(t_{0}-t)} \,dt \equiv \delta (t_{0}-t) \mbox{ or } \delta (t-t_{0})</math>


This now gives us a surprisingly familiar function:
<math>
\int_{- \infty}^{\infty} g(t)e^{-j2 \pi (f-f_{0})t} \,dt = \int_{- \infty}^{\infty} g(t)e^{-j2 \pi \theta t} \,dt
</math>
<br/>


Because of this definition (and some "math magic") our problem has been simplified significantly: <br/>
This looks just like <math> \displaystyle G(\theta )</math>!


<math>
We can now conclude that:
\mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right]
= \int_{- \infty}^{\infty}10^{t}g(t) \delta (t-t_{0})\,dt = 10^{t_0}g(t_0)
</math>
<br/>
<br/>


Therefore,
<math>
\mathcal{F} \left[ g(t)e^{j2 \pi f_{0}t} \right] = G(\theta ) = G(f-f_{0})
</math>
<br>


<math> \mathcal{F} \left[ \int_{- \infty}^{\infty}10^{t}g(t)e^{j2 \pi ft_0} \,dt \right] = 10^{t_0}g(t_0) </math>
Looks good - Kevin

Latest revision as of 09:36, 8 November 2009

Fourier Transform Properties


Nick Christman

1. Find [g(t)ej2πf0t]

This is a fairly straightforward property and is known as complex modulation

[g(t)ej2πf0t]=[g(t)ej2πf0t]ej2πftdt

Combining terms, we get:

[g(t)ej2πf0t]ej2πftdt=g(t)ej2π(ff0)tdt

Now let's make the following substitution θ=ff0

This now gives us a surprisingly familiar function:

g(t)ej2π(ff0)tdt=g(t)ej2πθtdt

This looks just like G(θ)!

We can now conclude that:

[g(t)ej2πf0t]=G(θ)=G(ff0)

Looks good - Kevin