Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 15: Line 15:


:<math>k3=100 N/m\,</math>
:<math>k3=100 N/m\,</math>

State Equations

<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
0&0&0&0 \\
0&0&0&1 \\
0&0&0&0
\end{bmatrix}

\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}

+

\begin{bmatrix}
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0
\end{bmatrix}

\begin{bmatrix}
0\\
0\\
0\\
0
\end{bmatrix}

</math>

Eigenmodes



Written by: Andrew Hellie

Revision as of 13:43, 25 November 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 Coupled Oscillator.jpg

Initial Conditions:

State Equations

=

Eigenmodes


Written by: Andrew Hellie