Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 59: Line 59:


</math>
</math>

With the numbers...


<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&0&\frac{-100 N/m}{15 kg}&0 \\
0&0&0&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&0
\end{bmatrix}

\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}

+

\begin{bmatrix}
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0
\end{bmatrix}

\begin{bmatrix}
0\\
0\\
0\\
0
\end{bmatrix}

</math>



Eigenmodes
Eigenmodes

Revision as of 14:41, 25 November 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 Coupled Oscillator.jpg

Initial Conditions:

State Equations

=

With the numbers...


=


Eigenmodes

There are three eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference
3) m1 and m2 oscillating at different times


Solve Using the Matrix Exponential



Written by: Andrew Hellie