Coupled Oscillator: Hellie: Difference between revisions
Jump to navigation
Jump to search
Line 59: | Line 59: | ||
</math> |
</math> |
||
With the numbers... |
|||
<math> |
|||
\begin{bmatrix} |
|||
\dot{x_1} \\ |
|||
\ddot{x_1} \\ |
|||
\dot{x_2} \\ |
|||
\ddot{x_2} |
|||
\end{bmatrix}\, |
|||
</math> |
|||
= |
|||
<math> |
|||
\begin{bmatrix} |
|||
0&1&0&0 \\ |
|||
\frac{(-50 N/m)}{15 kg}&0&\frac{-100 N/m}{15 kg}&0 \\ |
|||
0&0&0&1 \\ |
|||
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&0 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
x_1 \\ |
|||
\dot{x}_1 \\ |
|||
x_2 \\ |
|||
\dot{x}_2 |
|||
\end{bmatrix} |
|||
+ |
|||
\begin{bmatrix} |
|||
0&0&0&0 \\ |
|||
0&0&0&0 \\ |
|||
0&0&0&0 \\ |
|||
0&0&0&0 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
0\\ |
|||
0\\ |
|||
0\\ |
|||
0 |
|||
\end{bmatrix} |
|||
</math> |
|||
Eigenmodes |
Eigenmodes |
Revision as of 14:41, 25 November 2009
Problem Statement
Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.
Initial Conditions:
State Equations
=
With the numbers...
=
Eigenmodes
- There are three eigenmodes for the system
- 1) m1 and m2 oscillating together
- 2) m1 and m2 oscillating at exactly a half period difference
- 3) m1 and m2 oscillating at different times
Solve Using the Matrix Exponential
Written by: Andrew Hellie