Laplace transforms: Simple Electrical Network: Difference between revisions
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
Substituting numbers into the equations, we have |
Substituting numbers into the equations, we have |
||
<math>0.5\frac{di_1}{dt}+60i_2= |
<math>0.5\frac{di_1}{dt}+60i_2=50</math> |
||
<math>60(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math> |
<math>60(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math> |
||
Line 16: | Line 16: | ||
Applying the Laplace transform to each equation gives |
Applying the Laplace transform to each equation gives |
||
<math>\frac{1}{2}(s |
<math>\frac{1}{2}(s\mathcal{L}\left\{i_1\right\}-i_1(0))+60\mathcal{L}\left\{i_2\right\}=50</math> |
||
<math>0.006(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math> |
|||
<math></math> |
|||
<math>\Rightarrow\frac{1}{2}s\mathcal{L}\left\{i_1\right\}+60\mathcal{L}\left\{i_2\right\}=\frac{50}{s}</math> |
|||
<math>-200\mathcal{L}\left\{i_1\right\}+(s+200)\mathcal{L}\left\{i_2\right\}=0</math> |
|||
Solving for <math>\mathcal{L}\left\{i_1\right\}</math> gives |
Revision as of 20:00, 30 November 2009
Problem Statement
Using the formulas
Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10-4 f, and the currents are initially zero.
Solution
Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10^{-4} f, and the currents are initially zero. Substituting numbers into the equations, we have
Applying the Laplace transform to each equation gives
Solving for gives