Coupled Oscillator: Coupled Mass-Spring System with Damping: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 55: Line 55:
==State Space Equation==
==State Space Equation==
The general form for the state equation is as shown below:
The general form for the state equation is as shown below:


<math> \underline{\dot{x}}(t) = \widehat{A} \, \underline{x}(t) + \widehat{C} \, \underline{u}(t) </math>
<math> \underline{\dot{x}}(t) = \widehat{A} \, \underline{x}(t) + \widehat{C} \, \underline{u}(t) </math>
Line 60: Line 61:


Where <math>\widehat{M}</math> denotes a matrix and <math>\underline{v}</math> denotes a vector.
Where <math>\widehat{M}</math> denotes a matrix and <math>\underline{v}</math> denotes a vector.


If we let <math>x_1 \frac{}{}</math>, <math>\dot{x}_1 \frac{}{}</math>, <math>x_2 \frac{}{}</math>, and <math>\dot{x_2} \frac{}{}</math> be the state variables, then
If we let <math>x_1 \frac{}{}</math>, <math>\dot{x}_1 \frac{}{}</math>, <math>x_2 \frac{}{}</math>, and <math>\dot{x_2} \frac{}{}</math> be the state variables, then


<math>
<math>
Line 78: Line 81:


\begin{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 0 \\
  0 & 0 & 0 & 0 \\
  0 & 0 & 0 & 0 \\
  0 & 0 & 0 & 0 \\
  0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
  0 & 0 & 0 & 0 \\
  0 & 0 & 0 & 0 \\
\end{bmatrix}
\end{bmatrix}

Revision as of 12:38, 1 December 2009

Problem Statement

For the below system set up a set of state variable equations, and then solve using Laplace transformations. Assume all motion takes place in the vertical directions.

Fig. 1

Initial Values

For the upper mass:

m1=80kg

k1=60000Nm

b1=0.1

And for the lower mass:

m2=400kg

k2=120000Nm

b2=0.2

Find the Force Equations

First we need to sum forces in the y-direction for each block.

For mass 1:

+Fy1=m1x¨1m1x¨1=2b1x˙1k1s1+k2s2+m1g


For mass 2:

+Fy2=m2x¨2m2x¨2=2b2x˙2k2s2+m2g


For the cases above

s1=(l1+x1) and s2=(l2+x2)

where l is the unstretched length of the spring and x is the displacement of the spring.


So if we put the equations above into the correct form we have:


x¨1=2b1m1x˙1k1m1l1k1m1x1+k2m2l1+k2m2x2+g

and

x¨2=2b2m2x˙2k2m2l2k2m2x2+g

State Space Equation

The general form for the state equation is as shown below:


x˙_(t)=A^x_(t)+C^u_(t)


Where M^ denotes a matrix and v_ denotes a vector.


If we let x1, x˙1, x2, and x2˙ be the state variables, then


[x˙1x¨1x˙2x¨2]= [0100000000010000][x1x˙1x2x˙2]+[00000000][L1L2]