Coupled Horizontal Spring Mass Oscillator: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
(New page: =Coupled Oscillator Spring Mass Oscillator: State Space = ==Problem Statement== Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring...)
 
Line 11: Line 11:
===Things we know===
===Things we know===


<math>m_1 = 4 kg \frac{}{}</math>
<math>m_1 = 5 kg \frac{}{}</math>


<math>m_2 = 4 kg \frac{}{}</math>
<math>m_2 = 5 kg \frac{}{}</math>


<math>k_1 = 50 Nm \frac{}{}</math>
<math>k_1 = 50 Nm \frac{}{}</math>
Line 20: Line 20:


<math>k_3 = 50 Nm \frac{}{}</math>
<math>k_3 = 50 Nm \frac{}{}</math>

<math>\text {So now that we have are problem we need to start setting up the equations we need to solve it.}\,</math>

<math>\dot{x_1}=\dot{x_1}</math>

<math>\ddot{x_1}+\frac{k_1+k_2}{m_1}{x_1}-\frac{k_2}{m_1}{x_2}=0</math>

<math>\dot{x_2}=\dot{x_2}</math>

<math>\ddot{x_2}+\frac{k_3+k_2}{m_2}{x_2}-\frac{k_2}{m_2}{x_1}=0</math>

<math>\text {Now we take these equations and put them in a state space model.}\,</math>

<math>\begin{bmatrix} \dot{x_1} \\\ddot{x_1} \\\dot{x_2} \\\ddot{x_2}\end{bmatrix}\,
</math>
=
<math>\begin{bmatrix}0&1&0&0 \\\frac{(k_1+k_2)}{m_1}&0&\frac{-k_1}{m_1}&0 \\0&0&0&1 \\\frac{-k_1}{m_2}&0&\frac{(k_1+k_2)}{m_2}&0
\end{bmatrix}

\begin{bmatrix}x_1 \\\dot{x}_1 \\x_2 \\\dot{x}_2
\end{bmatrix}

+

\begin{bmatrix}0\end{bmatrix}
</math>

<math>\text {Now we make the appropriate numerical substitutions.}\,</math>


<math>\begin{bmatrix} \dot{x_1} \\\ddot{x_1} \\\dot{x_2} \\\ddot{x_2}\end{bmatrix}\,
</math>
=
<math>\begin{bmatrix}0&1&0&0 \\\frac{150}{5}&0&\frac{-50}{5}&0 \\0&0&0&1 \\\frac{-50}{5}&0&\frac{150}{5}&0 \end{bmatrix}

\begin{bmatrix}x_1 \\\dot{x}_1 \\x_2 \\\dot{x}_2\end{bmatrix}

+

\begin{bmatrix}0\end{bmatrix}
</math>




<math>\begin{bmatrix} \dot{x_1} \\\ddot{x_1} \\\dot{x_2} \\\ddot{x_2}\end{bmatrix}\,

=


\begin{bmatrix}0&1&0&0 \\30&0&-10&0 \\0&0&0&1 \\-10&0&30&0\end{bmatrix}


\begin{bmatrix}x_1 \\\dot{x}_1 \\x_2 \\\dot{x}_2\end{bmatrix}

+

\begin{bmatrix}0\end{bmatrix}
</math>

Revision as of 23:44, 2 December 2009

Coupled Oscillator Spring Mass Oscillator: State Space

Problem Statement

Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2. They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.


Solution

Things we know

=


=