Coupled Oscillator: Double Pendulum: Difference between revisions
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2) + (m_1+m_2)l_1gsin\theta_1 = 0</math> |
: <math>(m_1+m_2)l_1^2\theta_1^{\prime\prime} + m_2l_1l_2\theta_2^{\prime\prime}cos(\theta_1-\theta_2) + m_2l_1l_2(\theta_2^{\prime})^2sin(\theta_1-\theta_2) + (m_1+m_2)l_1gsin\theta_1 = 0</math> |
||
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime}cos(\theta_1-\theta_2) - m_2l_1l_2(\theta_1^{\prime})^2sin(\theta_1-\theta_2) + m_2l_2gsin\theta_2 = 0</math> |
: <math>m_2l_1^2\theta_2^{\prime\prime} + m_2l_1l_2\theta_1^{\prime\prime}cos(\theta_1-\theta_2) - m_2l_1l_2(\theta_1^{\prime})^2sin(\theta_1-\theta_2) + m_2l_2gsin\theta_2 = 0</math> |
||
In order to linearize these equations, we assume that the displacements <math>\theta_1</math> and <math>\theta_2</math> are small enough so that <math>cos(\theta_1-\theta_2)\approx1</math> and <math>sin(\theta_1-\theta_2)\approx0</math>. Thus, |
In order to linearize these equations, we assume that the displacements <math>\theta_1</math> and <math>\theta_2</math> are small enough so that <math>cos(\theta_1-\theta_2)\approx1</math> and <math>sin(\theta_1-\theta_2)\approx0</math>. Thus, |
||
Line 41: | Line 42: | ||
: <math>A(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math> |
: <math>A(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + B(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + C\boldsymbol{\Theta}_1 = 0</math> |
||
⚫ | |||
: <math>D(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + B(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + E\boldsymbol{\Theta}_2 = 0</math> |
: <math>D(s^2\boldsymbol{\Theta}_2-s\theta_2-\theta_2^{\prime}) + B(s^2\boldsymbol{\Theta}_1-s\theta_1-\theta_1^{\prime}) + E\boldsymbol{\Theta}_2 = 0</math> |
||
At time <math>t=0</math> we assume that <math>\theta_1(t)^{\prime}=\theta_2(t)^{\prime}=0</math>. Thus, solvin for <math>\boldsymbol{\Theta}_1</math> and <math>\boldsymbol{\Theta}_2</math> we obtain, |
|||
⚫ | |||
: <math>\boldsymbol{\Theta}_2=\dfrac{sB\theta_1+sD\theta_2-s^2B\boldsymbol{\Theta}_1}{(s^2D+E)}</math> |
|||
=== State Space === |
Revision as of 21:45, 6 December 2009
By Jimmy Apablaza By Jimmy Apablaza
This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).
Problem Statement
Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.
Assumptions:
- the system oscillates vertically under the influence of gravity.
- the mass of both rod are neligible
- no dumpung forces act on the system
- positive direction to the right.
The system of differential equations describing the motion is nonlinear
In order to linearize these equations, we assume that the displacements and are small enough so that and . Thus,
Solution
Laplace Transform
Since our concern is about the motion functions, we will assign the masses and , the rod lenghts and , and gravitational force constants to different variables as follows,
Hence,
Solving the Laplace Transform system yeilds,
At time we assume that . Thus, solvin for and we obtain,