Coupled Horizontal Spring Mass Oscillator: Difference between revisions
Jump to navigation
Jump to search
Mark.bernet (talk | contribs) |
Mark.bernet (talk | contribs) |
||
Line 101: | Line 101: | ||
<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}\,</math> |
<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}\,</math> |
||
==Solve with the Matrix exponential== |
|||
<math>\text {So first we need to know what the matrix exponential equation looks like.}\,</math> |
|||
<math>\text {it is...}\,</math> |
|||
<math>\tilde{x}=e^{\tilde{A}t}\tilde{x(0)}\,</math> |
|||
<math>\text {Where a is a matrix}\,</math> |
Revision as of 17:28, 9 December 2009
Coupled Oscillator Spring Mass Oscillator: State Space
Problem Statement
Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2. They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.
Solution
Things we know
=
=
,,,
Solve with the Matrix exponential