|
|
Line 125: |
Line 125: |
|
<math>\text {Where }\,</math> |
|
<math>\text {Where }\,</math> |
|
|
|
|
|
<math>\tilde{T}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\, |
|
<math>\tilde{T}^{-1}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\, |
|
|
</math> |
|
|
|
|
|
<math>\text {I converted the T matrix to decimal form for make it easier to write up on here }\,</math> |
|
|
|
|
|
|
|
|
|
|
|
<math>\tilde{T}=\,</math></math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\, |
|
</math> |
|
</math> |
|
<math>\tilde{T}^{-1}=\,</math> |
|
Coupled Oscillator Spring Mass Oscillator: State Space
Problem Statement
Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2.
They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.
Solution
Things we know
=
=
,,,
Solve with the Matrix exponential
</math>