Coupled Horizontal Spring Mass Oscillator: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 139: Line 139:
<math>\hat{A}=\,</math><math>\begin{bmatrix}e^{\lambda_1t}&0&0&0 \\0&e^{\lambda_2t}&0&0 \\0&0&e^{\lambda_3t}&0 \\0&0&0&e^{\lambda_4t}\end{bmatrix}\,
<math>\hat{A}=\,</math><math>\begin{bmatrix}e^{\lambda_1t}&0&0&0 \\0&e^{\lambda_2t}&0&0 \\0&0&e^{\lambda_3t}&0 \\0&0&0&e^{\lambda_4t}\end{bmatrix}\,
</math>
</math>



<math>e^{\hat{A}t}=\,</math><math>\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}\,
<math>e^{\hat{A}t}=\,</math><math>\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}\,
</math>
</math>


<math>\text {Then the next step is}\,</math>

<math>\tilde{z}=e^{\hat{A}t}\tilde{z}(0)\,</math>

<math>\text {So that implies}\,</math>

<math>\tilde{x}=\tilde{T}^{-1}e^{\hat{A}t}\tilde{z}(0)\,</math><math>=\tilde{T}^{-1}e^{\hat{A}t}\tilde{T}^{-1}\tilde{x}(0)\,</math>


<math>\text {Now Simply substitute back in and we have the answer. }\,</math>


<math>\tilde{x}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}</math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\tilde{x}(0)\,</math>

Revision as of 19:23, 9 December 2009

Coupled Oscillator Spring Mass Oscillator: State Space

Problem Statement

Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2. They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.


Solution

Things we know

=


=




,,,


Solve with the Matrix exponential



</math>