Coupled Horizontal Spring Mass Oscillator: Difference between revisions
Jump to navigation
Jump to search
Mark.bernet (talk | contribs) |
|||
(11 intermediate revisions by one other user not shown) | |||
Line 80: | Line 80: | ||
</math> |
</math> |
||
<math>\text {So using |
<math>\text {So using Maple I was able to obtain the eigenvalues and eigenvectors.}\,</math> |
||
<math>\text {Eigenvalues.}\,</math> |
<math>\text {Eigenvalues.}\,</math> |
||
Line 97: | Line 97: | ||
</math>,<math>\ {K_4=}\,</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\, |
</math>,<math>\ {K_4=}\,</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\, |
||
</math> |
</math> |
||
<math>\text {So then the answer is...}\,</math> |
|||
<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}\,</math> |
|||
==Solve with the Matrix exponential== |
|||
<math>\text {So first we need to know what the matrix exponential equation looks like.}\,</math> |
|||
<math>\text {it is...}\,</math> |
|||
<math>\tilde{x}=e^{\tilde{A}t}\tilde{x(0)}\,</math> |
|||
<math>\text {Where A is a matrix}\,</math> |
|||
<math>\text {Also }\,</math> |
|||
<math>\tilde{z}=\tilde{T}\tilde{x}\,</math> |
|||
<math>\tilde{x}=\tilde{T}^{-1}\tilde{z}\,</math> |
|||
<math>\text {Where }\,</math> |
|||
<math>\tilde{T}^{-1}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\, |
|||
</math> |
|||
<math>\text {I converted the T matrix to decimal form for make it easier to write up on here }\,</math> |
|||
<math>\tilde{T}=\,</math></math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\, |
|||
</math> |
|||
<math>\text {and}\,</math> |
|||
<math>\hat{A}=\,</math><math>\begin{bmatrix}e^{\lambda_1t}&0&0&0 \\0&e^{\lambda_2t}&0&0 \\0&0&e^{\lambda_3t}&0 \\0&0&0&e^{\lambda_4t}\end{bmatrix}\, |
|||
</math> |
|||
<math>e^{\hat{A}t}=\,</math><math>\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}\, |
|||
</math> |
|||
<math>\text {Then the next step is}\,</math> |
|||
<math>\tilde{z}=e^{\hat{A}t}\tilde{z}(0)\,</math> |
|||
<math>\text {So that implies}\,</math> |
|||
<math>\tilde{x}=\tilde{T}^{-1}e^{\hat{A}t}\tilde{z}(0)\,</math><math>=\tilde{T}^{-1}e^{\hat{A}t}\tilde{T}^{-1}\tilde{x}(0)\,</math> |
|||
<math>\text {Now Simply substitute back in and we have the answer. }\,</math> |
|||
<math>\tilde{x}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}</math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\tilde{x}(0)\,</math> |
|||
---- |
|||
Created By: Mark Bernet |
Latest revision as of 19:32, 9 December 2009
Coupled Oscillator Spring Mass Oscillator: State Space
Problem Statement
Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2. They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.
Solution
Things we know
=
=
,,,
Solve with the Matrix exponential
</math>
Created By: Mark Bernet