Coupled Horizontal Spring Mass Oscillator: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(9 intermediate revisions by one other user not shown)
Line 80: Line 80:
</math>
</math>


<math>\text {So using maple i was able to obtain the eigenvalues and eigenvectors.}\,</math>
<math>\text {So using Maple I was able to obtain the eigenvalues and eigenvectors.}\,</math>


<math>\text {Eigenvalues.}\,</math>
<math>\text {Eigenvalues.}\,</math>
Line 100: Line 100:
<math>\text {So then the answer is...}\,</math>
<math>\text {So then the answer is...}\,</math>


<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}</math>
<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}\,</math>
 
==Solve with the Matrix exponential==
 
 
<math>\text {So first we need to know what the matrix exponential equation looks like.}\,</math>
 
<math>\text {it is...}\,</math>
 
 
 
<math>\tilde{x}=e^{\tilde{A}t}\tilde{x(0)}\,</math>
 
<math>\text {Where A is a matrix}\,</math>
 
<math>\text {Also }\,</math>
 
<math>\tilde{z}=\tilde{T}\tilde{x}\,</math>
 
<math>\tilde{x}=\tilde{T}^{-1}\tilde{z}\,</math>
 
<math>\text {Where }\,</math>
 
<math>\tilde{T}^{-1}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\,
</math>
 
<math>\text {I converted the T matrix to decimal form for make it easier to write up on here  }\,</math>
 
 
 
<math>\tilde{T}=\,</math></math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\,
</math>
 
<math>\text {and}\,</math>
 
<math>\hat{A}=\,</math><math>\begin{bmatrix}e^{\lambda_1t}&0&0&0 \\0&e^{\lambda_2t}&0&0 \\0&0&e^{\lambda_3t}&0 \\0&0&0&e^{\lambda_4t}\end{bmatrix}\,
</math>
 
 
<math>e^{\hat{A}t}=\,</math><math>\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}\,
</math>
 
 
<math>\text {Then the next step is}\,</math>
 
<math>\tilde{z}=e^{\hat{A}t}\tilde{z}(0)\,</math>
 
<math>\text {So that implies}\,</math>
 
<math>\tilde{x}=\tilde{T}^{-1}e^{\hat{A}t}\tilde{z}(0)\,</math><math>=\tilde{T}^{-1}e^{\hat{A}t}\tilde{T}^{-1}\tilde{x}(0)\,</math>
 
 
<math>\text {Now Simply substitute back in and we have the answer. }\,</math>
 
 
<math>\tilde{x}=\,</math><math>\begin{bmatrix}-1&-1&1&1 \\-2\sqrt(10)&2\sqrt(10)&2\sqrt(5)&-2\sqrt(5) \\1&1&1&1 \\2\sqrt(10)&-2\sqrt(10)&2\sqrt(5)&-2\sqrt(5)\end{bmatrix}\begin{bmatrix}e^{2\sqrt{10}t}&0&0&0 \\0&e^{-2\sqrt{10}t}&0&0 \\0&0&e^{2\sqrt{5}t}&0 \\0&0&0&e^{-2\sqrt{5}t}\end{bmatrix}</math><math>\begin{bmatrix}-.25&-.039528&.25&.039528 \\-.25&.039528&.25&-.039528 \\.25&.055902&.25&.055902 \\.25&-.055902&.25&-.055902\end{bmatrix}\tilde{x}(0)\,</math>
 
 
----
Created By: Mark Bernet

Latest revision as of 20:32, 9 December 2009

Coupled Oscillator Spring Mass Oscillator: State Space

Problem Statement

Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2. They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.


Solution

Things we know

m1=5kg

m2=5kg

k1=50Nm

k2=100Nm

k3=50Nm

So now that we have are problem we need to start setting up the equations we need to solve it.

x1˙=x1˙

x1¨+k1+k2m1x1k2m1x2=0

x2˙=x2˙

x2¨+k3+k2m2x2k2m2x1=0

Now we take these equations and put them in a state space model.

[x1˙x1¨x2˙x2¨] = [0100(k1+k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0]

Now we make the appropriate numerical substitutions.


[x1˙x1¨x2˙x2¨] = [01001505050500001505015050][x1x˙1x2x˙2]+[0]



[x1˙x1¨x2˙x2¨]=[01003001000001100300][x1x˙1x2x˙2]+[0]

So using Maple I was able to obtain the eigenvalues and eigenvectors.

Eigenvalues.


λ1=210 λ2=210 λ3=25 λ4=25

Eigenvectors.

K1=[12(10)12(10)],K2=[12(10)12(10)],K3=[12(5)12(5)],K4=[12(5)12(5)]

So then the answer is...

x=c1[12(10)12(10)]e210+c2[12(10)12(10)]e2*210+c3[12(5)12(5)]e3*25+c4[12(5)12(5)]e4*25

Solve with the Matrix exponential

So first we need to know what the matrix exponential equation looks like.

it is...


x~=eA~tx(0)~

Where A is a matrix

Also 

z~=T~x~

x~=T~1z~

Where 

T~1=[11112(10)2(10)2(5)2(5)11112(10)2(10)2(5)2(5)]

I converted the T matrix to decimal form for make it easier to write up on here 


T~=</math>[.25.039528.25.039528.25.039528.25.039528.25.055902.25.055902.25.055902.25.055902]

and

A^=[eλ1t0000eλ2t0000eλ3t0000eλ4t]


eA^t=[e210t0000e210t0000e25t0000e25t]


Then the next step is

z~=eA^tz~(0)

So that implies

x~=T~1eA^tz~(0)=T~1eA^tT~1x~(0)


Now Simply substitute back in and we have the answer. 


x~=[11112(10)2(10)2(5)2(5)11112(10)2(10)2(5)2(5)][e210t0000e210t0000e25t0000e25t][.25.039528.25.039528.25.039528.25.039528.25.055902.25.055902.25.055902.25.055902]x~(0)



Created By: Mark Bernet