|
|
Line 80: |
Line 80: |
|
</math> |
|
</math> |
|
|
|
|
|
<math>\text {So using maple i was able to obtain the eigenvalues and eigenvectors.}\,</math> |
|
<math>\text {So using Maple I was able to obtain the eigenvalues and eigenvectors.}\,</math> |
|
|
|
|
|
<math>\text {Eigenvalues.}\,</math> |
|
<math>\text {Eigenvalues.}\,</math> |
Line 101: |
Line 101: |
|
|
|
|
|
<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}\,</math> |
|
<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}\,</math> |
|
|
|
|
|
|
|
|
|
|
|
==Solve with the Matrix exponential== |
|
==Solve with the Matrix exponential== |
Coupled Oscillator Spring Mass Oscillator: State Space
Problem Statement
Two 4 Kg Weights are suspended between two walls. They are connected by a spring between them with a spring constant k2.
They are connected to the walls by two springs k1 and k3 with k1=k3. m1 is a distance x1 form m2 and m2 is x2 from the wall.
Solution
Things we know
=
=
,,,
Solve with the Matrix exponential
</math>
Created By: Mark Bernet