Laplace transforms: Critically Damped Spring Mass system: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 13: Line 13:




<math>m=\frac{98}{9.81}</math>
<math>m=\frac{98}{9.81}kg</math>


<math>\text {Spring Constant k=40}\,</math>
<math>\text {Spring Constant k=40}N/m\,</math>


<math>\text {Damping Constant C=40}\,</math>
<math>\text {Damping Constant C=40}\,</math>
Line 82: Line 82:




<math>\text {So as you can see the value for the initial position will be 0. Because the infinity in the denominator always makes the function tend toward zero.}\,</math>
<math>\text {So as you can see the value for the initial position will be 0.}\,</math>
<math>\text {Because the infinity in the denominator always makes the function tend toward zero.}\,</math>


<math>\text {Which makes sense because the system is initially in equilibrium. }\,</math>
<math>\text {Which makes sense because the system is initially in equilibrium. }\,</math>
Line 94: Line 95:


<math>\text {This shows the final value to be}\,</math>
<math>\text {This shows the final value to be}\,</math>
<math>-\frac{4}{4}ft</math>
<math>-\frac{4}{4}m</math>


<math>\text {Which appears to mean the system will be right below equilibrium after a long time. }\,</math>
<math>\text {Which appears to mean the system will be right below equilibrium after a long time. }\,</math>
Line 116: Line 117:
==Break Points==
==Break Points==


Find the Break points using the transfer function
<math>\text {Find the Break points using the transfer function.}\,</math>


==Transfer fucntion==
===Transfer fucntion===


<math>\mathbf {X}(s)=-\frac{4}{(s+2)^2} </math><br /><br />
<math>\mathbf {X}(s)=-\frac{4}{(s+2)^2} </math><br /><br />
<math>\text {The equation above contains break points but only in the denominator.}\,</math>
<math>\text {There is only the variable s in the denominator so only those types of break point exist}\,</math>
<math>\text {The break points are asymtotes at the point -2 which occurs twice in this particular equation}\,</math>
==Convolution==
<math>\text {The convolution equation is as follows:  }\,</math>
<math>
x(t)=x_{in}(t) * h(t) = \int_{0}^{t} {x(t_0) \, h(t-t_0) \, dt_0}
</math>
<math>\text {It does basically the same thing as the Laplace Transform.  }\,</math>
<math>\text {To start we must inverse transform our transfer function  }\,</math>
<math>\mathbf {X}(s)=-\frac{4}{(s+2)^2} </math><br /><br />
<math>\text {Which once more yields:  }\,</math>
<math>\mathbf {x}(t)=-4te^{-2t}</math><br /><br />
<math>\text {Then we put this into the convolution integral:  }\,</math>
<math>
x(t)=x_{in}(t) * h(t) = \int_{0}^{t} {-4(t-t_0)e^{-2t-t_0} \, dt_0}
</math>
<math>\text {Which once more yeilds:  }\,</math>
<math>\mathbf {x}(t)=(-cte^{-2t})</math><br /><br />
<math>\text {Not exactly the same but remember initial conditions arnt used}\,</math>
==State Space==
<math>\text {Using state equatons is just another way to solve a system modeled by an ODE }\,</math>
<math>\text {First we need to add an applied force so u(t)=2N  }\,</math>
<math>m=\frac{98.1}{9.81}=10 kg</math>
<math>\text {k=40}\,</math>
<math>\text {C=40}\,</math>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
<math>\text {x(0)=0}\,</math>
<math>\dot{x}(0)=-4</math>
<math>\ddot{x}(0)=0</math>
<math>\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix}=\begin{bmatrix} 0 & 1 \\ -k/m & -C/m \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \begin{bmatrix} 0 \\ 1/m \end{bmatrix}u(t)</math>


Created by Greg Peterson
Created by Greg Peterson


Checked by Mark Bernet
Checked by Mark Bernet

Latest revision as of 14:26, 10 December 2009

Using the Laplace Transform to solve a spring mass system that is critically damped

Problem Statement

An 98 Newton weight is attached to a spring with a spring constant k of 40 N/m. The spring is stretched 4 m and rests at its equilibrium position. It is then released from rest with an initial upward velocity of 2 m/s. The system contains a damping force of 40 times the initial velocity.

Solution

Given

m=989.81kg

Spring Constant k=40N/m

Damping Constant C=40

x(0)=0

x˙(0)=4

Standard equation: 

md2xdt2+Cdxdt+khx=0

Solving the problem

Therefore the equation representing this system is.

989.8d2xdt2=40x40dxdt

Now we put the equation in standard form

d2xdt2+4010dxdt+4010x=0


Now that we have the equation written in standard form we need to send it through the Laplace Transform.

[d2xdt2+4010dxdt+205x]

And we get the equation (after some substitution and simplification).

s2X(s)+4sX(s)+4X(s)=4

X(s)(s2+4s+4)=4


X(s)=4(s+2)2

Now that we have completed the Laplace Transform and solved for X(s) we must so an inverse Laplace Transform. 

1[4(s+2)2]

and we get

x(t)=4te2t

So there you have it the equation of a Critically Damped spring mass system.

Apply the Initial and Final Value Theorems to find the initial and final values

Initial Value Theorem
limssF(s)=f(0)
Final Value Theorem
lims0sF(s)=f()


Applying this to our problem

The Initial Value Theorem

limssX(s)=4(s+2)2

limssX(s)=4(+2)2=0


So as you can see the value for the initial position will be 0. Because the infinity in the denominator always makes the function tend toward zero.

Which makes sense because the system is initially in equilibrium. 

The Final Value Theorem

lims0sX(s)=4(s+2)2


lims0sX(s)=4(0+2)2=44

This shows the final value to be 44m

Which appears to mean the system will be right below equilibrium after a long time. 

Bode Plot of the transfer function

Transfer Function

X(s)=4(s+2)2

Bode Plot

This plot is done using the control toolbox in MatLab. 

Fig (1)



Break Points

Find the Break points using the transfer function.

Transfer fucntion

X(s)=4(s+2)2

The equation above contains break points but only in the denominator.

There is only the variable s in the denominator so only those types of break point exist

The break points are asymtotes at the point -2 which occurs twice in this particular equation

Convolution

The convolution equation is as follows: 

x(t)=xin(t)*h(t)=0tx(t0)h(tt0)dt0

It does basically the same thing as the Laplace Transform.  To start we must inverse transform our transfer function 


X(s)=4(s+2)2

Which once more yields: 

x(t)=4te2t

Then we put this into the convolution integral: 

x(t)=xin(t)*h(t)=0t4(tt0)e2tt0dt0

Which once more yeilds: 


x(t)=(cte2t)


Not exactly the same but remember initial conditions arnt used

State Space

Using state equatons is just another way to solve a system modeled by an ODE 

First we need to add an applied force so u(t)=2N 

m=98.19.81=10kg

k=40

C=40

x(0)=0

x˙(0)=4

x¨(0)=0


[x˙x¨]=[01k/mC/m][xx˙]+[01/m]u(t)



Created by Greg Peterson

Checked by Mark Bernet