Coupled Oscillator: horizontal Mass-Spring: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 5: Line 5:
[[Image:horizontal spring.jpg]]
[[Image:horizontal spring.jpg]]
'''Initial Conditions:'''
'''Initial Conditions:'''
:<math>m_1= 10 kg\,</math>

:<math>m_2 = 10 kg\,</math>

:<math>k1=25 N/m\,</math>

:<math>k2=75 N/m\,</math>

:<math>k3=50 N/m\,</math>

'''Equations for M_1'''

:<math>\begin{alignat}{3}
F & = ma \\
F & = m\ddot{x} \\
-k_{1}x_{1}-k_{2}(x_1x_2) & = m_1\ddot{x_1} \\
-{k_1x_1 \over {m_1}}-{k_2(x_1-x_2) \over {m_1}} & = m_1\ddot{x_1} \\
-{k_1x_1 \over {m_1}}-{k_2(x_1-x_2) \over {m_1}} & = \ddot{x_1} \\
-{k_1+k_2 \over {m_1}}x_1+{k_2 \over {m_1}}x_2 & = \ddot{x_1} \\
\end{alignat}</math>

'''Equations for M_2'''
:<math>\begin{alignat}{3}
F & = ma \\
F & = m\ddot{x} \\
-k_2(x_2-x_1) & = m_2\ddot{x_2} \\
{-k_2(x_2-x_1) \over {m_2}} & = \ddot{x_2} \\
-{k_2 \over {m_2}}x_2+{k_2 \over {m_2}}x_1 & = \ddot{x_2} \\
\end{alignat}</math>

'''Additional Equations'''
:<math>\dot{x_1}=\dot{x_1}</math>
:<math>\dot{x_2}=\dot{x_2}</math>

'''State Equations'''

<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
\frac{(k_1-k_2)}{m_1}&0&\frac{-k_1}{m_1}&0 \\
0&0&0&1 \\
\frac{k_1}{m_2}&0&\frac{(k_1+k_2)}{m_2}&0
\end{bmatrix}

\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}

+

\begin{bmatrix}
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0 \\
0&0&0&0
\end{bmatrix}

\begin{bmatrix}
0\\
0\\
0\\
0
\end{bmatrix}

</math>

'''With the numbers...'''


<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&0&\frac{-100 N/m}{15 kg}&0 \\
0&0&0&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&0
\end{bmatrix}

\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}


</math>

Revision as of 13:45, 10 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 Horizontal spring.jpg

Initial Conditions:

Equations for M_1

Equations for M_2

Additional Equations

State Equations

=

With the numbers...


=