Coupled Oscillator: horizontal Mass-Spring: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 184: Line 184:
0
0
\end{bmatrix}</math>
\end{bmatrix}</math>
'''So then the answer is...'''
<math>\ x=c_1</math><math>\begin{bmatrix}-1 \\-2\sqrt(10) \\1 \\2\sqrt(10)\end{bmatrix}\,</math><math>e^{2\sqrt{10}}+ c_2</math><math>\begin{bmatrix}-1 \\2\sqrt(10) \\1 \\-2\sqrt(10)\end{bmatrix}\,</math><math>e^{2*-2\sqrt{10}}+ c_3</math><math>\begin{bmatrix}1 \\2\sqrt(5) \\1 \\2\sqrt(5)\end{bmatrix}\,</math><math>e^{3*2\sqrt{5}}+ c_4</math><math>\begin{bmatrix}1 \\-2\sqrt(5) \\1 \\-2\sqrt(5)\end{bmatrix}\,</math><math>e^{4*-2\sqrt{5}}\,</math>


== Matrix Exponential ==
== Matrix Exponential ==

Revision as of 15:06, 10 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes and eigenvectors of the system.

 

Initial Conditions:

m1=10kg
m2=10kg
k1=25N/m
k2=75N/m
k3=50N/m

Equations for M_1

F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨

Equations for M_2

F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨

Additional Equations

x1˙=x1˙
x2˙=x2˙

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)10kg025N/m10kg0000125N/m10kg0(100N/m)10kg0][x1x˙1x2x˙2]

Eigen Values

Once you have your equations of equilibrium in matrix form you can plug them into MATLAB which will give you the eigen values automatically.

Given
m1=10kg
m2=10kg
k1=25Nm
k2=50Nm

We now have

[x1˙x1¨x2˙x2¨]=[0100502.5000012.50100][x1x1˙x2x2˙]+[0000]

From this we get

λ1=
λ2=
λ3=
λ4=

Eigen Vectors

Using the equation above and the same given conditions we can plug everything into MATLAB and get the eigen vectors which we will denote as k1,k2,k3,k4.

k1=[0000]
k2=[0000]
k3=[0000]
k4=[0000]

So then the answer is...

x=c1[12(10)12(10)]e210+c2[12(10)12(10)]e2*210+c3[12(5)12(5)]e3*25+c4[12(5)12(5)]e4*25

Matrix Exponential

We now use matrix exponentials to solve the same problem.

z=Tx

So from the above equation we get this to prove the matrix exponetial works.

z˙=TAT1z



We also know what T equals and we can solve it for our case

T1=[k1|k2|k3|k4]
T1=[0000000000000000]

Taking the inverse of this we can solve for T

T=[0000000000000000]