Coupled Oscillator: Jonathan Schreven: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 165: Line 165:


== Matrix Exponential ==
== Matrix Exponential ==
In this section we will use matrix exponentials to solve the same problem. First we start with this identity.
We already know what the matrix A is from our state space equation
:<math>\bold{A}=\begin{bmatrix}
0 & 1 & 0 & 0 \\
-4.5 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -4 & 0
\end{bmatrix}</math>
 
And we know that the T-inverse matrix is
:<math>\bold{T^{-1}}=[\bar{k_1}|\bar{k_2}|\bar{k_3}|\bar{k_4}]\,</math>
:<math>\bold{T^{-1}}=\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}</math>
 
It then follows that matrix T is
:<math>\bold{T}=\begin{bmatrix}
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}</math>
 
Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials.
:<math>\bar{z}=\bold{T}\bar{x}\,</math>
:<math>\bar{z}=\bold{T}\bar{x}\,</math>


This can be rearranged by multiplying the inverse of '''T''' to the left side of the equation.
This can be rearranged by multiplying '''T-inverse''' to the left side of the equations.
:<math>\bold{T^{-1}}\bar{z}=\bar{x}\,</math>
:<math>\bold{T^{-1}}\bar{z}=\bar{x}\,</math>


Now we can use another identity that we already know
Now we can bring in the standard form of a state space equation
:<math>\dot{\bar{x}}=\bold{A}\bar{x}</math>
:<math>\dot{\bar{x}}=\bold{A}\bar{x}</math>


Line 187: Line 212:


If we take the Laplace transform of this equation we can come up with the following
If we take the Laplace transform of this equation we can come up with the following
:<math>\bar{z}=e^{\bold{A}t}\bar{z}(0)</math>
:<math>\bar{z}=e^{\bold{\hat{A}}t}\bar{z}(0)</math>


If we calculate the value of <math>\bold{\hat{A}}</math> we will find that it is <math>\lambda\bold{I}</math>
We know the values of T, A, and T^{-1}. If we calculate the value of <math>\bold{\hat{A}}</math> we will find that it is <math>\hat{\lambda}\bold{I}</math>
:<math>\bold{\hat{A}}=\begin{bmatrix}
:<math>\bold{\hat{A}}=
\begin{bmatrix}
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 0 \\
-{(k_1+k_2)\over {m_1}} & 0 & {k_2\over {m_1}} & 0 \\
0 & 0 & 0 & 1 \\
{k_2\over {m_2}} & 0 & -{k_2\over {m_2}} & 0
\end{bmatrix}
\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}
=
\begin{bmatrix}
2.6626i & 0 & 0 & 0 \\
2.6626i & 0 & 0 & 0 \\
0 & -2.6626i & 0 & 0 \\
0 & -2.6626i & 0 & 0 \\
0 & 0 & 1.1877i & 0 \\
0 & 0 & 1.1877i & 0 \\
0 & 0 & 0 & 1.1877i
0 & 0 & 0 & 1.1877i
\end{bmatrix}</math>
We also know what '''T''' equals and we can solve it for our case
:<math>\bold{T^{-1}}=[\bar{k_1}|\bar{k_2}|\bar{k_3}|\bar{k_4}]\,</math>
:<math>\bold{T^{-1}}=\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}</math>
Taking the inverse of this we can solve for '''T'''
:<math>\bold{T}=\begin{bmatrix}
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}</math>
\end{bmatrix}</math>

Revision as of 16:21, 10 December 2009

Problem

In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with.

Error creating thumbnail: File missing
Double Mass/Spring Oscillator

Equations of Equilibrium

Using F=ma we can then find our four equations of equilibrium.

Equation 1
F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨
Equation 2
F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨
Equation 3
x1˙=x1˙
Equation 4
x2˙=x2˙


Now we can put these four equations into the state space form.

[x1˙x1¨x2˙x2¨]=[0100(k1+k2)m10k2m100001k2m20k2m20][x1x1˙x2x2˙]+[0000]

Eigen Values

Once you have your equations of equilibrium in matrix form you can plug them into a calculator or a computer program that will give you the eigen values automatically. This saves you a lot of hand work. Here's what you should come up with for this particular problem given these initial conditions.

Given
m1=10kg
m2=5kg
k1=25Nm
k2=20Nm

We now have

[x1˙x1¨x2˙x2¨]=[01004.502000014040][x1x1˙x2x2˙]+[0000]

From this we get

λ1=2.6626i
λ2=2.6626i
λ3=1.18766i
λ4=1.18766i

Eigen Vectors

Using the equation above and the same given conditions we can plug everything to a calculator or computer program like MATLAB and get the eigen vectors which we will denote as k1,k2,k3,k4.

k1=[0.2149i0.57220.2783i0.7409]
k2=[0.2149i0.57220.2783i0.7409]
k3=[0.3500i0.41570.5407i0.6421]
k4=[0.3500i0.41570.5407i0.6421]

Solving

We can now plug these eigen vectors and eigen values into the standard equation

x=c1k1eλ1t+c2k2eλ2t+c3k3eλ3t+c4k4eλ4t

And our final answer is

x=c1[0.2149i0.57220.2783i0.7409]e2.6626it+c2[0.2149i0.57220.2783i0.7409]e2.6626it+c3[0.3500i0.41570.5407i0.6421]e1.18766it+c4[0.3500i0.41570.5407i0.6421]e1.18766it


Matrix Exponential

We already know what the matrix A is from our state space equation

A=[01004.502000014040]

And we know that the T-inverse matrix is

T1=[k1¯|k2¯|k3¯|k4¯]
T1=[0.2149i0.2149i0.3500i0.3500i0.57220.57220.41570.41570.2783i0.2783i0.5407i0.5407i0.74090.74090.64210.6421]

It then follows that matrix T is

T=[1.2657i0.47530.8193i0.30771.2657i0.47530.8193i0.30770.6514i0.54840.5031i0.42360.6514i0.54840.50310.4236]

Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials.

z¯=Tx¯

This can be rearranged by multiplying T-inverse to the left side of the equations.

T1z¯=x¯

Now we can bring in the standard form of a state space equation

x¯˙=Ax¯

Combining the two equations we then get

T1z¯˙=AT1z¯

Multiplying both sides of the equation on the left by T we get

z¯˙=TAT1z¯
z¯˙=A^z¯

This new equation has the same form as

x¯˙=Ax¯

where

A^=TAT1

If we take the Laplace transform of this equation we can come up with the following

z¯=eA^tz¯(0)

We know the values of T, A, and T^{-1}. If we calculate the value of A^ we will find that it is λ^I

A^=[1.2657i0.47530.8193i0.30771.2657i0.47530.8193i0.30770.6514i0.54840.5031i0.42360.6514i0.54840.50310.4236][0100(k1+k2)m10k2m100001k2m20k2m20][0.2149i0.2149i0.3500i0.3500i0.57220.57220.41570.41570.2783i0.2783i0.5407i0.5407i0.74090.74090.64210.6421]=[2.6626i00002.6626i00001.1877i00001.1877i]