Coupled Oscillator: Jonathan Schreven: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(43 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Problem ==


== Coupled Oscillator System ==
In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with.


In this problem I would like to explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Our system might look something like this.
:[[Image:Double Oscillator System.JPG|500px||center|Double Mass/Spring Oscillator]]


== Equations of Equilibrium ==




Using F=ma we can then find our equations of equilibrium.
Using F=ma we can then find our four equations of equilibrium.
 
:'''Equation 1'''
:<math>\begin{alignat}{3}
:<math>\begin{alignat}{3}
                                                         F & = ma \\
                                                         F & = ma \\
Line 16: Line 18:
           -{k_1+k_2 \over {m_1}}x_1+{k_2 \over {m_1}}x_2 & = \ddot{x_1} \\
           -{k_1+k_2 \over {m_1}}x_1+{k_2 \over {m_1}}x_2 & = \ddot{x_1} \\
\end{alignat}</math>
\end{alignat}</math>
:'''Equation 2'''
:<math>\begin{alignat}{3}
                                                        F & = ma \\
                                                        F & = m\ddot{x} \\
                                            -k_2(x_2-x_1) & = m_2\ddot{x_2} \\
                              {-k_2(x_2-x_1) \over {m_2}} & = \ddot{x_2} \\
              -{k_2 \over {m_2}}x_2+{k_2 \over {m_2}}x_1 & = \ddot{x_2} \\
\end{alignat}</math>
:'''Equation 3'''
:<math>\dot{x_1}=\dot{x_1}</math>
:'''Equation 4'''
:<math>\dot{x_2}=\dot{x_2}</math>
Now we can put these four equations into the state space form.
:<math>\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 & 0 \\
-{(k_1+k_2)\over {m_1}} & 0 & {k_2\over {m_1}} & 0 \\
0 & 0 & 0 & 1 \\
{k_2\over {m_2}} & 0 & -{k_2\over {m_2}} & 0
\end{bmatrix}
\begin{bmatrix}
{x_1} \\
\dot{x_1} \\
{x_2} \\
\dot{x_2}
\end{bmatrix}
+
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}</math>
== Eigen Values ==
Once you have your equations of equilibrium in matrix form you can plug them into a calculator or a computer program that will give you the eigen values automatically. This saves you a lot of hand work. Here's what you should come up with for this particular problem given these initial conditions.
:'''Given'''
:<math>m_1=10kg\,</math>
:<math>m_2=5kg\,</math>
:<math>k_1=25\,{N\over {m}}</math>
:<math>k_2=20\,{N\over {m}}</math>
We now have
:<math>\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 & 0 \\
-4.5 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -4 & 0
\end{bmatrix}
\begin{bmatrix}
{x_1} \\
\dot{x_1} \\
{x_2} \\
\dot{x_2}
\end{bmatrix}
+
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}</math>
From this we get
:<math>\lambda_1=2.6626i\,</math>
:<math>\lambda_2=-2.6626i\,</math>
:<math>\lambda_3=1.1877i\,</math>
:<math>\lambda_4=-1.1877i\,</math>
== Eigen Vectors ==
Using the equation above and the same given conditions we can plug everything to a calculator or computer program like MATLAB and get the eigen vectors which we will denote as <math>k_1,k_2,k_3,k_4\,</math>.
:<math>k_1=\begin{bmatrix}
0.2149i \\
-0.5722 \\
-0.2783i \\
0.7409
\end{bmatrix}</math>
:<math>k_2=\begin{bmatrix}
-0.2149i \\
-0.5722 \\
0.2783i \\
0.7409
\end{bmatrix}</math>
:<math>k_3=\begin{bmatrix}
-0.3500i \\
0.4157 \\
-0.5407i \\
0.6421
\end{bmatrix}</math>
:<math>k_4=\begin{bmatrix}
0.3500i \\
0.4157 \\
0.5407i \\
0.6421
\end{bmatrix}</math>
== Solving ==
We can now plug these eigen vectors and eigen values into the standard equation
:<math>\bar{x}=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math>
And our final answer is
:<math>\bar{x}=c_1\begin{bmatrix}
0.2149i \\
-0.5722 \\
-0.2783i \\
0.7409
\end{bmatrix}e^{2.6626it}+c_2\begin{bmatrix}
-0.2149i \\
-0.5722 \\
0.2783i \\
0.7409
\end{bmatrix}e^{-2.6626it}+c_3\begin{bmatrix}
-0.3500i \\
0.4157 \\
-0.5407i \\
0.6421
\end{bmatrix}e^{1.1877it}+c_4\begin{bmatrix}
0.3500i \\
0.4157 \\
0.5407i \\
0.6421
\end{bmatrix}e^{-1.1877it}</math>
== Matrix Exponential ==
We already know what the matrix A is from our state space equation
:<math>\bold{A}=\begin{bmatrix}
0 & 1 & 0 & 0 \\
-4.5 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -4 & 0
\end{bmatrix}</math>
And we know that the T-inverse matrix is
:<math>\bold{T^{-1}}=[\bar{k_1}|\bar{k_2}|\bar{k_3}|\bar{k_4}]\,</math>
:<math>\bold{T^{-1}}=\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}</math>
It then follows that matrix T is
:<math>\bold{T}=\begin{bmatrix}
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}</math>
Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials.
:<math>\bar{z}=\bold{T}\bar{x}\,</math>
This can be rearranged by multiplying '''T-inverse''' to the left side of the equations.
:<math>\bold{T^{-1}}\bar{z}=\bar{x}\,</math>
Now we can bring in the standard form of a state space equation
:<math>\dot{\bar{x}}=\bold{A}\bar{x}</math>
Combining the two equations we then get
:<math>\bold{T^{-1}}\dot{\bar{z}}=\bold{AT^{-1}}\bar{z}</math>
Multiplying both sides of the equation on the left by '''T''' we get
:<math>\dot{\bar{z}}=\bold{TAT^{-1}}\bar{z}</math>
:<math>\dot{\bar{z}}=\bold{\hat{A}}\bar{z}</math>
where
:<math>\bold{\hat{A}}=\bold{TAT^{-1}}</math>
:<math>\bold{\hat{A}}=
\begin{bmatrix}
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 0 \\
-{(k_1+k_2)\over {m_1}} & 0 & {k_2\over {m_1}} & 0 \\
0 & 0 & 0 & 1 \\
{k_2\over {m_2}} & 0 & -{k_2\over {m_2}} & 0
\end{bmatrix}
\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}</math>
:<math>=
\begin{bmatrix}
2.6626i & 0 & 0 & 0 \\
0 & -2.6626i & 0 & 0 \\
0 & 0 & 1.1877i & 0 \\
0 & 0 & 0 & 1.1877i
\end{bmatrix}</math>
If we take the Laplace transform of the above equation we can come up with the following
:<math>\bar{z}=e^{\bold{\hat{A}}t}\bar{z}(0)</math>
where
:<math>e^{\bold{\hat{A}}t}=\begin{bmatrix}
e^{2.6626it} & 0 & 0 & 0 \\
0 & e^{-2.6626it} & 0 & 0 \\
0 & 0 & e^{1.1877it} & 0 \\
0 & 0 & 0 & e^{1.1877it}
\end{bmatrix}</math>
We then substitute this equation back into
:<math>\bar{x}=\bold{T^{-1}}\bar{z}</math>
and get
:<math>\bar{x}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bar{z}(0)</math>
:<math>\bar{x}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bold{T}\bar{x}(0)</math>
Notice here that
:<math>e^{\bold{A}t}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bold{T}</math>
:<math>e^{\bold{A}t}=\begin{bmatrix}
0.2149i & -0.2149i & -0.3500i & 0.3500i \\
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\
0.7409 & 0.7409 & 0.6421 & 0.6421
\end{bmatrix}
\begin{bmatrix}
e^{2.6626it} & 0 & 0 & 0 \\
0 & e^{-2.6626it} & 0 & 0 \\
0 & 0 & e^{1.1877it} & 0 \\
0 & 0 & 0 & e^{1.1877it}
\end{bmatrix}
\begin{bmatrix}
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\
1.2657i & -0.4753 & -0.8193i & 0.3077 \\
0.6514i & 0.5484 & 0.5031i & 0.4236 \\
-0.6514i & 0.5484 & -0.5031 & 0.4236
\end{bmatrix}
</math>
You can solve this with a computer program or your calculator and plug it into the equation for '''A'''. I have not listed the answer for this problem here because it is very messy and extremely long. I did calculate it to make sure it is solvable. But if your numbers are easier to work with you would finish by plugging this value into the equation below.
:<math>\bar{x}=e^{\bold{A}t}\bar{x}(0)</math>

Latest revision as of 15:41, 11 December 2009

Problem

In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with.

Error creating thumbnail: File missing
Double Mass/Spring Oscillator

Equations of Equilibrium

Using F=ma we can then find our four equations of equilibrium.

Equation 1
F=maF=mx¨k1x1k2(x1x2)=m1x1¨k1x1m1k2(x1x2)m1=m1x1¨k1x1m1k2(x1x2)m1=x1¨k1+k2m1x1+k2m1x2=x1¨
Equation 2
F=maF=mx¨k2(x2x1)=m2x2¨k2(x2x1)m2=x2¨k2m2x2+k2m2x1=x2¨
Equation 3
x1˙=x1˙
Equation 4
x2˙=x2˙


Now we can put these four equations into the state space form.

[x1˙x1¨x2˙x2¨]=[0100(k1+k2)m10k2m100001k2m20k2m20][x1x1˙x2x2˙]+[0000]

Eigen Values

Once you have your equations of equilibrium in matrix form you can plug them into a calculator or a computer program that will give you the eigen values automatically. This saves you a lot of hand work. Here's what you should come up with for this particular problem given these initial conditions.

Given
m1=10kg
m2=5kg
k1=25Nm
k2=20Nm

We now have

[x1˙x1¨x2˙x2¨]=[01004.502000014040][x1x1˙x2x2˙]+[0000]

From this we get

λ1=2.6626i
λ2=2.6626i
λ3=1.1877i
λ4=1.1877i

Eigen Vectors

Using the equation above and the same given conditions we can plug everything to a calculator or computer program like MATLAB and get the eigen vectors which we will denote as k1,k2,k3,k4.

k1=[0.2149i0.57220.2783i0.7409]
k2=[0.2149i0.57220.2783i0.7409]
k3=[0.3500i0.41570.5407i0.6421]
k4=[0.3500i0.41570.5407i0.6421]

Solving

We can now plug these eigen vectors and eigen values into the standard equation

x¯=c1k1eλ1t+c2k2eλ2t+c3k3eλ3t+c4k4eλ4t

And our final answer is

x¯=c1[0.2149i0.57220.2783i0.7409]e2.6626it+c2[0.2149i0.57220.2783i0.7409]e2.6626it+c3[0.3500i0.41570.5407i0.6421]e1.1877it+c4[0.3500i0.41570.5407i0.6421]e1.1877it

Matrix Exponential

We already know what the matrix A is from our state space equation

A=[01004.502000014040]

And we know that the T-inverse matrix is

T1=[k1¯|k2¯|k3¯|k4¯]
T1=[0.2149i0.2149i0.3500i0.3500i0.57220.57220.41570.41570.2783i0.2783i0.5407i0.5407i0.74090.74090.64210.6421]

It then follows that matrix T is

T=[1.2657i0.47530.8193i0.30771.2657i0.47530.8193i0.30770.6514i0.54840.5031i0.42360.6514i0.54840.50310.4236]

Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials.

z¯=Tx¯

This can be rearranged by multiplying T-inverse to the left side of the equations.

T1z¯=x¯

Now we can bring in the standard form of a state space equation

x¯˙=Ax¯

Combining the two equations we then get

T1z¯˙=AT1z¯

Multiplying both sides of the equation on the left by T we get

z¯˙=TAT1z¯
z¯˙=A^z¯

where

A^=TAT1
A^=[1.2657i0.47530.8193i0.30771.2657i0.47530.8193i0.30770.6514i0.54840.5031i0.42360.6514i0.54840.50310.4236][0100(k1+k2)m10k2m100001k2m20k2m20][0.2149i0.2149i0.3500i0.3500i0.57220.57220.41570.41570.2783i0.2783i0.5407i0.5407i0.74090.74090.64210.6421]
=[2.6626i00002.6626i00001.1877i00001.1877i]


If we take the Laplace transform of the above equation we can come up with the following

z¯=eA^tz¯(0)

where

eA^t=[e2.6626it0000e2.6626it0000e1.1877it0000e1.1877it]

We then substitute this equation back into

x¯=T1z¯

and get

x¯=T1eA^tz¯(0)
x¯=T1eA^tTx¯(0)

Notice here that

eAt=T1eA^tT
eAt=[0.2149i0.2149i0.3500i0.3500i0.57220.57220.41570.41570.2783i0.2783i0.5407i0.5407i0.74090.74090.64210.6421][e2.6626it0000e2.6626it0000e1.1877it0000e1.1877it][1.2657i0.47530.8193i0.30771.2657i0.47530.8193i0.30770.6514i0.54840.5031i0.42360.6514i0.54840.50310.4236]

You can solve this with a computer program or your calculator and plug it into the equation for A. I have not listed the answer for this problem here because it is very messy and extremely long. I did calculate it to make sure it is solvable. But if your numbers are easier to work with you would finish by plugging this value into the equation below.

x¯=eAtx¯(0)