Coupled Oscillator: Jonathan Schreven: Difference between revisions
No edit summary |
|||
(27 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with. |
In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with. |
||
:[[Image:Double Oscillator System.JPG|500px||center|Double Mass/Spring Oscillator]] |
|||
== Equations of Equilibrium == |
== Equations of Equilibrium == |
||
Line 100: | Line 102: | ||
:<math>\lambda_1=2.6626i\,</math> |
:<math>\lambda_1=2.6626i\,</math> |
||
:<math>\lambda_2=-2.6626i\,</math> |
:<math>\lambda_2=-2.6626i\,</math> |
||
:<math>\lambda_3=1. |
:<math>\lambda_3=1.1877i\,</math> |
||
:<math>\lambda_4=-1. |
:<math>\lambda_4=-1.1877i\,</math> |
||
== Eigen Vectors == |
== Eigen Vectors == |
||
Line 132: | Line 134: | ||
0.6421 |
0.6421 |
||
\end{bmatrix}</math> |
\end{bmatrix}</math> |
||
== Solving == |
|||
We can now plug these eigen vectors and eigen values into the standard equation |
|||
:<math>\bar{x}=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math> |
|||
And our final answer is |
|||
:<math>\bar{x}=c_1\begin{bmatrix} |
|||
0.2149i \\ |
|||
-0.5722 \\ |
|||
-0.2783i \\ |
|||
0.7409 |
|||
\end{bmatrix}e^{2.6626it}+c_2\begin{bmatrix} |
|||
-0.2149i \\ |
|||
-0.5722 \\ |
|||
0.2783i \\ |
|||
0.7409 |
|||
\end{bmatrix}e^{-2.6626it}+c_3\begin{bmatrix} |
|||
-0.3500i \\ |
|||
0.4157 \\ |
|||
-0.5407i \\ |
|||
0.6421 |
|||
\end{bmatrix}e^{1.1877it}+c_4\begin{bmatrix} |
|||
0.3500i \\ |
|||
0.4157 \\ |
|||
0.5407i \\ |
|||
0.6421 |
|||
\end{bmatrix}e^{-1.1877it}</math> |
|||
== Matrix Exponential == |
|||
We already know what the matrix A is from our state space equation |
|||
:<math>\bold{A}=\begin{bmatrix} |
|||
0 & 1 & 0 & 0 \\ |
|||
-4.5 & 0 & 2 & 0 \\ |
|||
0 & 0 & 0 & 1 \\ |
|||
4 & 0 & -4 & 0 |
|||
\end{bmatrix}</math> |
|||
And we know that the T-inverse matrix is |
|||
:<math>\bold{T^{-1}}=[\bar{k_1}|\bar{k_2}|\bar{k_3}|\bar{k_4}]\,</math> |
|||
:<math>\bold{T^{-1}}=\begin{bmatrix} |
|||
0.2149i & -0.2149i & -0.3500i & 0.3500i \\ |
|||
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\ |
|||
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\ |
|||
0.7409 & 0.7409 & 0.6421 & 0.6421 |
|||
\end{bmatrix}</math> |
|||
It then follows that matrix T is |
|||
:<math>\bold{T}=\begin{bmatrix} |
|||
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\ |
|||
1.2657i & -0.4753 & -0.8193i & 0.3077 \\ |
|||
0.6514i & 0.5484 & 0.5031i & 0.4236 \\ |
|||
-0.6514i & 0.5484 & -0.5031 & 0.4236 |
|||
\end{bmatrix}</math> |
|||
Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials. |
|||
:<math>\bar{z}=\bold{T}\bar{x}\,</math> |
|||
This can be rearranged by multiplying '''T-inverse''' to the left side of the equations. |
|||
:<math>\bold{T^{-1}}\bar{z}=\bar{x}\,</math> |
|||
Now we can bring in the standard form of a state space equation |
|||
:<math>\dot{\bar{x}}=\bold{A}\bar{x}</math> |
|||
Combining the two equations we then get |
|||
:<math>\bold{T^{-1}}\dot{\bar{z}}=\bold{AT^{-1}}\bar{z}</math> |
|||
Multiplying both sides of the equation on the left by '''T''' we get |
|||
:<math>\dot{\bar{z}}=\bold{TAT^{-1}}\bar{z}</math> |
|||
:<math>\dot{\bar{z}}=\bold{\hat{A}}\bar{z}</math> |
|||
where |
|||
:<math>\bold{\hat{A}}=\bold{TAT^{-1}}</math> |
|||
:<math>\bold{\hat{A}}= |
|||
\begin{bmatrix} |
|||
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\ |
|||
1.2657i & -0.4753 & -0.8193i & 0.3077 \\ |
|||
0.6514i & 0.5484 & 0.5031i & 0.4236 \\ |
|||
-0.6514i & 0.5484 & -0.5031 & 0.4236 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
0 & 1 & 0 & 0 \\ |
|||
-{(k_1+k_2)\over {m_1}} & 0 & {k_2\over {m_1}} & 0 \\ |
|||
0 & 0 & 0 & 1 \\ |
|||
{k_2\over {m_2}} & 0 & -{k_2\over {m_2}} & 0 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
0.2149i & -0.2149i & -0.3500i & 0.3500i \\ |
|||
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\ |
|||
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\ |
|||
0.7409 & 0.7409 & 0.6421 & 0.6421 |
|||
\end{bmatrix}</math> |
|||
:<math>= |
|||
\begin{bmatrix} |
|||
2.6626i & 0 & 0 & 0 \\ |
|||
0 & -2.6626i & 0 & 0 \\ |
|||
0 & 0 & 1.1877i & 0 \\ |
|||
0 & 0 & 0 & 1.1877i |
|||
\end{bmatrix}</math> |
|||
If we take the Laplace transform of the above equation we can come up with the following |
|||
:<math>\bar{z}=e^{\bold{\hat{A}}t}\bar{z}(0)</math> |
|||
where |
|||
:<math>e^{\bold{\hat{A}}t}=\begin{bmatrix} |
|||
e^{2.6626it} & 0 & 0 & 0 \\ |
|||
0 & e^{-2.6626it} & 0 & 0 \\ |
|||
0 & 0 & e^{1.1877it} & 0 \\ |
|||
0 & 0 & 0 & e^{1.1877it} |
|||
\end{bmatrix}</math> |
|||
We then substitute this equation back into |
|||
:<math>\bar{x}=\bold{T^{-1}}\bar{z}</math> |
|||
and get |
|||
:<math>\bar{x}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bar{z}(0)</math> |
|||
:<math>\bar{x}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bold{T}\bar{x}(0)</math> |
|||
Notice here that |
|||
:<math>e^{\bold{A}t}=\bold{T^{-1}}e^{\bold{\hat{A}}t}\bold{T}</math> |
|||
:<math>e^{\bold{A}t}=\begin{bmatrix} |
|||
0.2149i & -0.2149i & -0.3500i & 0.3500i \\ |
|||
-0.5722 & -0.5722 & 0.4157 & 0.4157 \\ |
|||
-0.2783i & 0.2783i & -0.5407i & 0.5407i \\ |
|||
0.7409 & 0.7409 & 0.6421 & 0.6421 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
e^{2.6626it} & 0 & 0 & 0 \\ |
|||
0 & e^{-2.6626it} & 0 & 0 \\ |
|||
0 & 0 & e^{1.1877it} & 0 \\ |
|||
0 & 0 & 0 & e^{1.1877it} |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
-1.2657i & -0.4753 & 0.8193i & 0.3077 \\ |
|||
1.2657i & -0.4753 & -0.8193i & 0.3077 \\ |
|||
0.6514i & 0.5484 & 0.5031i & 0.4236 \\ |
|||
-0.6514i & 0.5484 & -0.5031 & 0.4236 |
|||
\end{bmatrix} |
|||
</math> |
|||
You can solve this with a computer program or your calculator and plug it into the equation for '''A'''. I have not listed the answer for this problem here because it is very messy and extremely long. I did calculate it to make sure it is solvable. But if your numbers are easier to work with you would finish by plugging this value into the equation below. |
|||
:<math>\bar{x}=e^{\bold{A}t}\bar{x}(0)</math> |
Latest revision as of 14:41, 11 December 2009
Problem
In this problem we will explore the solution of a double spring/mass system under the assumption that the blocks are resting on a smooth surface. Here's a picture of what we are working with.
Equations of Equilibrium
Using F=ma we can then find our four equations of equilibrium.
- Equation 1
- Equation 2
- Equation 3
- Equation 4
Now we can put these four equations into the state space form.
Eigen Values
Once you have your equations of equilibrium in matrix form you can plug them into a calculator or a computer program that will give you the eigen values automatically. This saves you a lot of hand work. Here's what you should come up with for this particular problem given these initial conditions.
- Given
We now have
From this we get
Eigen Vectors
Using the equation above and the same given conditions we can plug everything to a calculator or computer program like MATLAB and get the eigen vectors which we will denote as .
Solving
We can now plug these eigen vectors and eigen values into the standard equation
And our final answer is
Matrix Exponential
We already know what the matrix A is from our state space equation
And we know that the T-inverse matrix is
It then follows that matrix T is
Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials.
This can be rearranged by multiplying T-inverse to the left side of the equations.
Now we can bring in the standard form of a state space equation
Combining the two equations we then get
Multiplying both sides of the equation on the left by T we get
where
If we take the Laplace transform of the above equation we can come up with the following
where
We then substitute this equation back into
and get
Notice here that
You can solve this with a computer program or your calculator and plug it into the equation for A. I have not listed the answer for this problem here because it is very messy and extremely long. I did calculate it to make sure it is solvable. But if your numbers are easier to work with you would finish by plugging this value into the equation below.