Coupled Oscillator: Double Pendulum: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
No edit summary
Line 232: Line 232:


=== Matrix Exponential ===
=== Matrix Exponential ===
The matrix exponential is,
: <math>\dot{\bar{z}}=\hat{A}\bar{z}=TAT^{-1}\bar{z}</math>
where
: <math>
\hat{A}
=
\begin{bmatrix}
0            & 1 & 0            & 0 \\
-\dfrac{8}{3} & 0 & \dfrac{2}{3}  & 0 \\
0            & 0 & 0            & 1 \\
\dfrac{8}{3}  & 0 & -\dfrac{8}{3} & 0 \\
\end{bmatrix}
</math>,
and
: <math>
T^{-1}
=
[k_1|k_2|k_3|k_4]
=
\begin{bmatrix}
-0.2 \mathbf{i} &  0.2 \mathbf{i} & -0.29277 \mathbf{i} &  0.29277 \mathbf{i} \\
0.4            &  0.4            &  0.33806            &  0.33806            \\
0.4 \mathbf{i}  & -0.4 \mathbf{i} &  0.58554 \mathbf{i} &  0.58554 \mathbf{i} \\
-0.8            & -0.8            & -0.67621            &  0.67621            \\
\end{bmatrix}
</math>,
so
: <math>
T
=
(T^{-1})^{-1}
=
[k_1|k_2|k_3|k_4]^{-1}
=
\begin{bmatrix}
1.25 \mathbf{i}    &  0.625    & -0.625 \mathbf{i}    & -0.3125  \\
-1.25 \mathbf{i}    &  0.625    &  0.625 \mathbf{i}    & -0.3125  \\
0.853913 \mathbf{i} &  0.73951  &  0.426956 \mathbf{i}  &  0.369755 \\
-0.853913 \mathbf{i} &  0.73951  & -0.426956 \mathbf{i}  &  0.369755 \\
\end{bmatrix}
</math>
Let's consider the space state equation, The matrix exponential is defined as,  
Let's consider the space state equation, The matrix exponential is defined as,  
: <math>\ddot{x} = \widehat{A} \, \underline{x}(t)</math>
where


:<math>\dot{\bar{z}}=\bold{\hat{A}}\bar{z}=\bold{TAT^{-1}}\bar{z}</math>
:<math>\dot{\bar{z}}=\bold{\hat{A}}\bar{z}=\bold{TAT^{-1}}\bar{z}</math>

Revision as of 16:34, 12 December 2009

By Jimmy Apablaza

This problem is described in Page 321-322, Section 7.6 of the A first Course in Differential Equations textbook, 8ED (ISBN 0-534-41878-3).

Error creating thumbnail: File missing
Figure 1. Coupled Pendulum.‎

Problem Statement

Consider the double-pendulum system consisting of a pendulum attached to another pendulum shown in Figure 1.

Assumptions:

  • the system oscillates vertically under the influence of gravity.
  • the mass of both rod are neligible
  • no dumpung forces act on the system
  • positive direction to the right.

The system of differential equations describing the motion is nonlinear

(m1+m2)l12θ1+m2l1l2θ2cos(θ1θ2)+m2l1l2(θ2)2sin(θ1θ2)+(m1+m2)l1gsinθ1=0
m2l12θ2+m2l1l2θ1cos(θ1θ2)m2l1l2(θ1)2sin(θ1θ2)+m2l2gsinθ2=0


In order to linearize these equations, we assume that the displacements θ1 and θ2 are small enough so that cos(θ1θ2)1 and sin(θ1θ2)0. Thus,

(m1+m2)l12θ1+m2l1l2θ2+(m1+m2)l1gθ1=0
m2l12θ2+m2l1l2θ1+m2l2gθ2=0

Solution

Since our concern is about the motion functions, we will assign the masses m1 and m2, the rod lenghts l1 and l1, and gravitational force g constants to different variables as follows,

A=(m1+m2)l12B=m2l1l2C=(m1+m2)l1gD=m2l12E=m2l2g

Hence,

Aθ1'+Bθ2'+Cθ1=0
Dθ2'+Bθ1'+Eθ2=0

Solving for θ1' and θ2' we obtain,

θ1'=(BA)θ2'(CA)θ1
θ2'=(BD)θ1'(ED)θ2

Therefore,

θ1'=(CDAD+B2)θ1(BEAD+B2)θ2
θ2'=(BCAD+B2)θ1(AEAD+B2)θ2

State Space

[θ1'θ1'θ2'θ2']=A^x_(t)+B^u_(t)=[0100CDADB20BEADB200001BCADB20AEADB20]{θ1θ1'θ2θ2'}+0^

Let's plug some numbers. Knowing g=32, and assuming that m1=3, m2=1, and l1=l2=16, the constants defined previously become,

A=1024B=256C=2048D=256E=512

Hence, the state space matrix is,

[θ1'θ1'θ2'θ2']=[01008302300001830830]{θ1θ1'θ2θ2'}

Eigenvalues

The eigenvalues are obtained from A^'s identity matrix,

[λIA]=[λ10083λ23000λ183083λ]

According to my TI-89, the eigenvalues are,

λ1=2i
λ2=2i
λ3=1.1547i
λ4=1.1547i

and the eigenvectors,

k1=[0.2i0.40.4i0.8]k2=[0.2i0.40.4i0.8]k3=[0.29277i0.338060.58554i0.67621]k4=[0.29277i0.338060.58554i0.67621]

Standard Equation

Now, we plug the eigenvalues and eigenvectors to produce the standar equation,

x=c1k1eλ1t+c2k2eλ2t+c3k3eλ3t+c4k4eλ4t
x=c1[0.2i0.40.4i0.8]e2i+c2[0.2i0.40.4i0.8]e2i+c3[0.29277i0.338060.58554i0.67621]e1.1547i+c4[0.29277i0.338060.58554i0.67621]e1.1547i

Matrix Exponential

The matrix exponential is,

z¯˙=A^z¯=TAT1z¯

where

A^=[01008302300001830830],

and

T1=[k1|k2|k3|k4]=[0.2i0.2i0.29277i0.29277i0.40.40.338060.338060.4i0.4i0.58554i0.58554i0.80.80.676210.67621],

so

T=(T1)1=[k1|k2|k3|k4]1=[1.25i0.6250.625i0.31251.25i0.6250.625i0.31250.853913i0.739510.426956i0.3697550.853913i0.739510.426956i0.369755]


Let's consider the space state equation, The matrix exponential is defined as,

x¨=A^x_(t)

where


z¯˙=A^z¯=TAT1z¯


Now we can use the equation for a transfer function to help us solve through the use of matrix exponentials.

z¯=Tx¯

This can be rearranged by multiplying T-inverse to the left side of the equations.

T1z¯=x¯

Now we can bring in the standard form of a state space equation

x¯˙=Ax¯

Combining the two equations we then get

T1z¯˙=AT1z¯

Multiplying both sides of the equation on the left by T we get

z¯˙=TAT1z¯

where

A^=