Coupled Oscillator: Hellie: Difference between revisions
Jump to navigation
Jump to search
Line 6: | Line 6: | ||
'''Initial Conditions:''' |
'''Initial Conditions:''' |
||
:<math>m_1= |
:<math>m_1= 10 kg\,</math> |
||
:<math>m_2 = |
:<math>m_2 = 10 kg\,</math> |
||
:<math>k1=100 N/m\,</math> |
:<math>k1=100 N/m\,</math> |
||
Line 75: | Line 75: | ||
\begin{bmatrix} |
\begin{bmatrix} |
||
0&1&0&0 \\ |
0&1&0&0 \\ |
||
\frac{(-50 N/m)}{ |
\frac{(-50 N/m)}{10 kg}&0&\frac{-100 N/m}{10 kg}&0 \\ |
||
0&0&0&1 \\ |
0&0&0&1 \\ |
||
\frac{100 N/m}{ |
\frac{-100 N/m}{10 kg}&0&\frac{(250 N/m)}{10 kg}&0 |
||
\end{bmatrix} |
\end{bmatrix} |
||
Line 89: | Line 89: | ||
</math> |
</math> |
||
<math> |
|||
\begin{bmatrix} |
|||
\dot{x_1} \\ |
|||
\ddot{x_1} \\ |
|||
\dot{x_2} \\ |
|||
\ddot{x_2} |
|||
\end{bmatrix}\, |
|||
</math> |
|||
= |
|||
<math> |
|||
\begin{bmatrix} |
|||
0&1&0&0 \\ |
|||
-5&0&-10&0 \\ |
|||
0&0&0&1 \\ |
|||
-10&0&25&0 |
|||
\end{bmatrix} |
|||
\begin{bmatrix} |
|||
x_1 \\ |
|||
\dot{x}_1 \\ |
|||
x_2 \\ |
|||
\dot{x}_2 |
|||
\end{bmatrix} |
|||
</math> |
|||
'''Eigenvalues''' |
|||
<math>\lambda_1=-5.29412\,</math> |
|||
<math>\lambda_2=2.83333i\,</math> |
|||
<math>\lambda_3= -2.83333i\,</math> |
|||
<math>\lambda_4=0\,</math> |
|||
'''Eigenvectors''' |
|||
:<math>k_1=\begin{bmatrix} |
|||
-.05379\\ |
|||
.28475 \\ |
|||
.17764 \\ |
|||
-.94046 |
|||
\end{bmatrix}</math> |
|||
:<math>k_2=\begin{bmatrix} |
|||
-.31854i\\ |
|||
.90253 \\ |
|||
-.09645i\\ |
|||
.27326 |
|||
\end{bmatrix}</math> |
|||
:<math>k_3=\begin{bmatrix} |
|||
.31854i\\ |
|||
.90253 \\ |
|||
.09645i \\ |
|||
.27326 |
|||
\end{bmatrix}</math> |
|||
:<math>k_4=\begin{bmatrix} |
|||
-.05379\\ |
|||
-.28475 \\ |
|||
.17764 \\ |
|||
.94046 |
|||
\end{bmatrix}</math> |
|||
Revision as of 11:38, 13 December 2009
Problem Statement
Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.
Initial Conditions:
State Equations
=
With the numbers...
=
=
Eigenvalues
Eigenvectors
Eigenmodes
- There are two eigenmodes for the system
- 1) m1 and m2 oscillating together
- 2) m1 and m2 oscillating at exactly a half period difference
Solve Using the Matrix Exponential
=
Written by: Andrew Hellie