Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 6: Line 6:
'''Initial Conditions:'''
'''Initial Conditions:'''


:<math>m_1= 15 kg\,</math>
:<math>m_1= 10 kg\,</math>


:<math>m_2 = 15 kg\,</math>
:<math>m_2 = 10 kg\,</math>


:<math>k1=100 N/m\,</math>
:<math>k1=100 N/m\,</math>
Line 75: Line 75:
\begin{bmatrix}
\begin{bmatrix}
0&1&0&0 \\
0&1&0&0 \\
\frac{(-50 N/m)}{15 kg}&0&\frac{-100 N/m}{15 kg}&0 \\
\frac{(-50 N/m)}{10 kg}&0&\frac{-100 N/m}{10 kg}&0 \\
0&0&0&1 \\
0&0&0&1 \\
\frac{100 N/m}{15 kg}&0&\frac{(250 N/m)}{15 kg}&0
\frac{-100 N/m}{10 kg}&0&\frac{(250 N/m)}{10 kg}&0
\end{bmatrix}
\end{bmatrix}


Line 89: Line 89:


</math>
</math>


<math>
\begin{bmatrix}
\dot{x_1} \\
\ddot{x_1} \\
\dot{x_2} \\
\ddot{x_2}
\end{bmatrix}\,
</math>
=
<math>
\begin{bmatrix}
0&1&0&0 \\
-5&0&-10&0 \\
0&0&0&1 \\
-10&0&25&0
\end{bmatrix}

\begin{bmatrix}
x_1 \\
\dot{x}_1 \\
x_2 \\
\dot{x}_2
\end{bmatrix}


</math>


'''Eigenvalues'''

<math>\lambda_1=-5.29412\,</math>

<math>\lambda_2=2.83333i\,</math>

<math>\lambda_3= -2.83333i\,</math>

<math>\lambda_4=0\,</math>


'''Eigenvectors'''

:<math>k_1=\begin{bmatrix}
-.05379\\
.28475 \\
.17764 \\
-.94046
\end{bmatrix}</math>


:<math>k_2=\begin{bmatrix}
-.31854i\\
.90253 \\
-.09645i\\
.27326
\end{bmatrix}</math>


:<math>k_3=\begin{bmatrix}
.31854i\\
.90253 \\
.09645i \\
.27326
\end{bmatrix}</math>


:<math>k_4=\begin{bmatrix}
-.05379\\
-.28475 \\
.17764 \\
.94046
\end{bmatrix}</math>





Revision as of 11:38, 13 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 Coupled Oscillator.jpg

Initial Conditions:

State Equations

=

With the numbers...


=


=


Eigenvalues


Eigenvectors





Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference



Solve Using the Matrix Exponential



=




Written by: Andrew Hellie