Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 121: Line 121:
'''Eigenvalues'''
'''Eigenvalues'''


<math>\lambda_1=-5.29412\,</math>
:<math>\lambda_1=-5.29412\,</math>


<math>\lambda_2=2.83333i\,</math>
:<math>\lambda_2=2.83333i\,</math>


<math>\lambda_3= -2.83333i\,</math>
:<math>\lambda_3= -2.83333i\,</math>


<math>\lambda_4=0\,</math>
:<math>\lambda_4=0\,</math>




Line 162: Line 162:
.94046
.94046
\end{bmatrix}</math>
\end{bmatrix}</math>

'''Standard Equation'''

:<math>x=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math>

:<math>\ x=c_1</math><math>\begin{bmatrix}
-.05379\\
.28475 \\
.17764 \\
-.94046
\end{bmatrix}\,</math><math>e^{-5.29412}+ c_2\,</math><math>
\begin{bmatrix}
-.31854i\\
.90253 \\
-.09645i\\
.27326
\end{bmatrix}\,</math><math>e^{2.83333i}+ c_3\,</math><math>\begin{bmatrix}
.31854i\\
.90253 \\
.09645i \\
.27326
\end{bmatrix}\,</math><math>e^{-2.83333i}+ c_4\,</math><math>\begin{bmatrix}
-.05379\\
-.28475 \\
.17764 \\
.94046
\end{bmatrix},
</math><math>e^{0}\,</math>






Revision as of 11:54, 13 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 Coupled Oscillator.jpg

Initial Conditions:

State Equations

=

With the numbers...


=


=


Eigenvalues


Eigenvectors




Standard Equation


Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference



Solve Using the Matrix Exponential



=




Written by: Andrew Hellie