Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 121: Line 121:
'''Eigenvalues'''
'''Eigenvalues'''


<math>\lambda_1=-5.29412\,</math>
:<math>\lambda_1=-5.29412\,</math>


<math>\lambda_2=2.83333i\,</math>
:<math>\lambda_2=2.83333i\,</math>


<math>\lambda_3= -2.83333i\,</math>
:<math>\lambda_3= -2.83333i\,</math>


<math>\lambda_4=0\,</math>
:<math>\lambda_4=0\,</math>




Line 162: Line 162:
.94046
.94046
\end{bmatrix}</math>
\end{bmatrix}</math>
'''Standard Equation'''
:<math>x=c_1k_1e^{\lambda_1 t}+c_2k_2e^{\lambda_2 t}+c_3k_3e^{\lambda_3 t}+c_4k_4e^{\lambda_4 t}</math>
:<math>\ x=c_1</math><math>\begin{bmatrix}
-.05379\\
.28475 \\
.17764 \\
-.94046
\end{bmatrix}\,</math><math>e^{-5.29412}+ c_2\,</math><math>
\begin{bmatrix}
-.31854i\\
.90253 \\
-.09645i\\
.27326
\end{bmatrix}\,</math><math>e^{2.83333i}+ c_3\,</math><math>\begin{bmatrix}
.31854i\\
.90253 \\
.09645i \\
.27326
\end{bmatrix}\,</math><math>e^{-2.83333i}+ c_4\,</math><math>\begin{bmatrix}
-.05379\\
-.28475 \\
.17764 \\
.94046
\end{bmatrix},
</math><math>e^{0}\,</math>





Revision as of 12:54, 13 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.

 

Initial Conditions:

m1=10kg
m2=10kg
k1=100N/m
k2=150N/m
k3=100N/m

State Equations

[x1˙x1¨x2˙x2¨] = [0100(k1k2)m10k1m100001k1m20(k1+k2)m20][x1x˙1x2x˙2]+[0000000000000000][0000]

With the numbers...


[x1˙x1¨x2˙x2¨] = [0100(50N/m)10kg0100N/m10kg00001100N/m10kg0(250N/m)10kg0][x1x˙1x2x˙2]


[x1˙x1¨x2˙x2¨] = [0100501000001100250][x1x˙1x2x˙2]


Eigenvalues

λ1=5.29412
λ2=2.83333i
λ3=2.83333i
λ4=0


Eigenvectors

k1=[.05379.28475.17764.94046]


k2=[.31854i.90253.09645i.27326]


k3=[.31854i.90253.09645i.27326]


k4=[.05379.28475.17764.94046]

Standard Equation

x=c1k1eλ1t+c2k2eλ2t+c3k3eλ3t+c4k4eλ4t
x=c1[.05379.28475.17764.94046]e5.29412+c2[.31854i.90253.09645i.27326]e2.83333i+c3[.31854i.90253.09645i.27326]e2.83333i+c4[.05379.28475.17764.94046],e0


Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference



Solve Using the Matrix Exponential


eAt=1{[SIA]1}


[SIA] = [S100(50N/m)15kgS100N/m15kg000S1100N/m15kg0(250N/m)15kgS]


[SIA]1=


1{[SIA]1}=


Written by: Andrew Hellie