Coupled Oscillator: Hellie: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
Line 1: Line 1:
===Problem Statement===
===Problem Statement===



'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.'''
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential'''


[[Image:Coupled_Oscillator.jpg]]
[[Image:Coupled_Oscillator.jpg]]
Line 192: Line 193:
.17764 \\
.17764 \\
.94046
.94046
\end{bmatrix},
\end{bmatrix}\,
</math><math>e^{0}\,</math>
</math><math>e^{0}\,</math>




'''Eigenmodes'''
'''Eigenmodes'''
Line 207: Line 206:




'''Matrix Exponential using transformation z=Tx'''


<math>T^{-1}=[k_1|k_2|k_3|k_4]\,</math>
'''Solve Using the Matrix Exponential'''

<math>z=Tx\,</math>


<math>\dot{z}=TAT^{-1}z \,</math>



<math>\dot{z}=\,</math>
<math>\begin{bmatrix}
-5.2941&0&0&0 \\
0&2.833i&0&0 \\
0&0&-2.83333i&0 \\
0&0&0&5.2941
\end{bmatrix}\,
</math>
<math>z\,</math>



<math>B=TAT^{-1}=\begin{bmatrix}
-5.2941&0&0&0 \\
0&2.833i&0&0 \\
0&0&-2.83333i&0 \\
0&0&0&5.2941
\end{bmatrix}\,</math>



<math>z=e^{Bt}z(0)\,</math>


<math>e^{Bt}=\begin{bmatrix}
e^{-5.2941}&0&0&0 \\
0&e^{2.833i}&0&0 \\
0&0&e^{-2.83333i}&0 \\
0&0&0&e^{5.2941}
\end{bmatrix}\,</math>

<math>x=T^{-1}z

<math>x=T^{-1}e^{Bt}Tx(0)\,</math>

<math>e^{Pt}=T^{-1}e^{Bt}T\,</math>

<math>e^{Pt}=\,</math>lots of variables

'''Another way to solve using the Matrix exponential'''




Line 228: Line 276:




<math>[SI-A]^{-1} = \,</math>
<math>[SI-A]^{-1} =\,</math> (something too large for my calculator to display or that I want to type out)



<math>\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\} = \,</math>


<math>\mathcal{L}^{-1}\left\{[SI-A]^{-1}\right\} = \,</math>(something too large for my calculator to display or that I want to type out)


Written by: Andrew Hellie
Written by: Andrew Hellie

Revision as of 14:29, 13 December 2009

Problem Statement

Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential

 Coupled Oscillator.jpg

Initial Conditions:

F=ma

State Equations

=

With the numbers...


=


=


Eigenvalues


Eigenvectors




Standard Equation

Eigenmodes

There are two eigenmodes for the system
1) m1 and m2 oscillating together
2) m1 and m2 oscillating at exactly a half period difference


Matrix Exponential using transformation z=Tx






lots of variables

Another way to solve using the Matrix exponential



=


(something too large for my calculator to display or that I want to type out)


(something too large for my calculator to display or that I want to type out)

Written by: Andrew Hellie