Coupled Oscillator: Hellie: Difference between revisions
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
===Problem Statement=== |
===Problem Statement=== |
||
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system.''' |
'''Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential''' |
||
[[Image:Coupled_Oscillator.jpg]] |
[[Image:Coupled_Oscillator.jpg]] |
||
Line 192: | Line 193: | ||
.17764 \\ |
.17764 \\ |
||
.94046 |
.94046 |
||
\end{bmatrix}, |
\end{bmatrix}\, |
||
</math><math>e^{0}\,</math> |
</math><math>e^{0}\,</math> |
||
'''Eigenmodes''' |
'''Eigenmodes''' |
||
Line 207: | Line 206: | ||
'''Matrix Exponential using transformation z=Tx''' |
|||
<math>T^{-1}=[k_1|k_2|k_3|k_4]\,</math> |
|||
'''Solve Using the Matrix Exponential''' |
|||
<math>z=Tx\,</math> |
|||
<math>\dot{z}=TAT^{-1}z \,</math> |
|||
<math>\dot{z}=\,</math> |
|||
<math>\begin{bmatrix} |
|||
-5.2941&0&0&0 \\ |
|||
0&2.833i&0&0 \\ |
|||
0&0&-2.83333i&0 \\ |
|||
0&0&0&5.2941 |
|||
\end{bmatrix}\, |
|||
</math> |
|||
<math>z\,</math> |
|||
<math>B=TAT^{-1}=\begin{bmatrix} |
|||
-5.2941&0&0&0 \\ |
|||
0&2.833i&0&0 \\ |
|||
0&0&-2.83333i&0 \\ |
|||
0&0&0&5.2941 |
|||
\end{bmatrix}\,</math> |
|||
<math>z=e^{Bt}z(0)\,</math> |
|||
<math>e^{Bt}=\begin{bmatrix} |
|||
e^{-5.2941}&0&0&0 \\ |
|||
0&e^{2.833i}&0&0 \\ |
|||
0&0&e^{-2.83333i}&0 \\ |
|||
0&0&0&e^{5.2941} |
|||
\end{bmatrix}\,</math> |
|||
<math>x=T^{-1}z |
|||
<math>x=T^{-1}e^{Bt}Tx(0)\,</math> |
|||
<math>e^{Pt}=T^{-1}e^{Bt}T\,</math> |
|||
<math>e^{Pt}=\,</math>lots of variables |
|||
'''Another way to solve using the Matrix exponential''' |
|||
Line 228: | Line 276: | ||
<math>[SI-A]^{-1} = |
<math>[SI-A]^{-1} =\,</math> (something too large for my calculator to display or that I want to type out) |
||
⚫ | |||
⚫ | |||
Written by: Andrew Hellie |
Written by: Andrew Hellie |
Revision as of 14:29, 13 December 2009
Problem Statement
Write up on the Wiki a solution of a coupled oscillator problem like the coupled pendulum. Use State Space methods. Describe the eigenmodes of the system. Solve Using the Matrix Exponential
Initial Conditions:
F=ma
State Equations
=
With the numbers...
=
=
Eigenvalues
Eigenvectors
Standard Equation
Eigenmodes
- There are two eigenmodes for the system
- 1) m1 and m2 oscillating together
- 2) m1 and m2 oscillating at exactly a half period difference
Matrix Exponential using transformation z=Tx
lots of variables
Another way to solve using the Matrix exponential
=
(something too large for my calculator to display or that I want to type out)
(something too large for my calculator to display or that I want to type out)
Written by: Andrew Hellie