Laplace transforms: Simple Electrical Network: Difference between revisions

From Class Wiki
Jump to navigation Jump to search
 
(19 intermediate revisions by the same user not shown)
Line 4: Line 4:
  <math>RC\dfrac{di_R}{dt}+i_R-i_C=0</math>
  <math>RC\dfrac{di_R}{dt}+i_R-i_C=0</math>


Solve the system when V0 = 50 V, L = 0.5 h, R = 80 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero.
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero.


==Solution==
==Solution==
Solve the system when V0 = 50 V, L = 0.5 h, R = 60 Ω, C = 10^{-4} f, and the currents are initially zero.
Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10<sup>-4</sup> f, and the currents are initially zero.
Substituting numbers into the equations, we have


<math>0.5\frac{di_1}{dt}+60i_2=50</math>
<math>4\frac{di_1}{dt}+20i_2=50</math>


<math>60(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>
<math>20(10^{-4})\frac{di_2}{dt}+i_2-i_1=0</math>


Applying the Laplace transform to each equation gives
Applying the Laplace transform to each equation gives


<math>\frac{1}{2}(s\mathcal{L}\left\{i_1\right\}-i_1(0))+60\mathcal{L}\left\{i_2\right\}=50</math>
<math>4(s\mathcal{L}\left\{i_1\right\}-i_1(0))+20\mathcal{L}\left\{i_2\right\}=50</math>


<math>0.006(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>
<math>\Rightarrow4sI_1(s)+20I_2(s)=\frac{50}{s}</math>


<math>\Rightarrow\frac{1}{2}sI_1(s)+60I_2(s)=\frac{50}{s}</math>
<math>0.005(s\mathcal{L}{i_2}-i_2(0))+\mathcal{L}\left\{i_2\right\}-\mathcal{L}\left\{i_1\right\}=0</math>


<math>-200I_1(s)+[s+200]I_2(s)=0</math>
<math>\Rightarrow-500I_1(s)+[s+500]I_2(s)=0</math>


Solving for <math>\mathcal{L}\left\{i_1\right\}</math> gives
Solving for <math>I_2(s)</math>
 
<math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}</math>
 
We find the partial decomposition
 
Let <math>I_2(s)= \frac{6250}{s(s^2+500s+2500)}=\frac{A}{s}+\frac{Bs+C}{s^2+500s+2500}</math>
 
<math>\Rightarrow6250=A(s^2+500s+2500)+(Bs+C)s</math>
 
<math>\Rightarrow62500=As^2+500As+2500A+Bs^2+Cs</math>
 
Comparing the coefficients we get
 
<math>A=\frac{5}{2},B=-5,C=-1250</math>
 
Thus
<math>I_2(s)=\frac{5}{2s}-\frac{5s+1250}{s^2+500s+2500}</math>
 
Now we do the same for <math>I_1</math> where we solve the function in terms of <math>I_1</math> and decomposing the partial fraction resulting in
 
<math>I_1(s)= \frac{25s+12500}{s(s^2+500s+2500)}=\frac{5}{s}-\frac{5s+2475}{s^2+500s+2500}</math>
 
In order to make it nicer on us we need to complete the square as follows
 
<math> s^2+500s+2500=0</math>
 
<math>\Rightarrow s^2+500s=-2500</math>
 
<math>\Rightarrow s^2+500s+\left(\frac{500}{2}\right)^2=-2500+\left(\frac{500}{2}\right)^2</math>
 
<math>\Rightarrow s^2+500s+62500=6000</math>
 
<math>\Rightarrow (s+250)^2-(100\sqrt{6})^2=0</math>
 
Thus
 
<math>I_2(s)=\frac{5}{2s}-5\frac{s+250}{(s+250)^2-(100\sqrt{6})^2}-\frac{5\sqrt{6}}{12}\frac{100\sqrt{6}}{(s+250)^2-(100\sqrt{6})^2}</math>
 
 
Taking the Inverse Laplace transform gives
 
<math>\mathcal{L}^{-1}\left\{I_2(s)\right\}= i_2(t) =\frac{5}{2}-5e^{-250t}cosh100\sqrt{6}t-\frac{5\sqrt{6}}{12}5e^{-250t}sinh100\sqrt{6}t</math>
 
==Initial Value Theorem==
 
<math>\lim_{s \to \infty}sI(s)=f(0^+)</math>
 
<math>\lim_{s \to \infty} s\frac{25s+12500}{s(s^2+500s+2500)}=i(0)</math>
 
<math> \Rightarrow i(0)=0</math>
 
<math>\lim_{s \to \infty}s\frac{6250}{s(s^2+500s+2500)}=i(0)</math>
 
<math> \Rightarrow i(0)=0</math>
 
==Final Value Theorem==
 
<math>\lim_{s \to 0}sI(s)=f(\infty)</math>
 
<math>\lim_{s \to \infty} s\frac{25s+12500}{s(s^2+500s+2500)}=i(\infty)</math>
 
<math>\Rightarrow i(\infty)=0</math>
 
<math>\lim_{s \to 0}s\frac{6250}{s(s^2+500s+2500)}=i(\infty)</math>
 
<math>\Rightarrow i(\infty)=0</math>
 
==Bode Plots==
The following are bode plots for the transfer functions
 
 
 
[[Image:I1_.jpg|400px|thumb|left|<math>H(s)_1=\frac{25s+12500}{s(s^2+500s+2500)}</math>]]
 
 
 
[[Image:I2_.jpg|400px|thumb|left|<math>H(s)_2=\frac{6250}{s(s^2+500s+2500)}</math>]]

Latest revision as of 16:35, 13 December 2009

Problem Statement

Using the formulas

E(t)=LdiRdt+RiC
RCdiRdt+iRiC=0

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

Solution

Solve the system when V0 = 50 V, L = 4 h, R = 20 Ω, C = 10-4 f, and the currents are initially zero.

4di1dt+20i2=50

20(104)di2dt+i2i1=0

Applying the Laplace transform to each equation gives

4(s{i1}i1(0))+20{i2}=50

4sI1(s)+20I2(s)=50s

0.005(si2i2(0))+{i2}{i1}=0

500I1(s)+[s+500]I2(s)=0

Solving for I2(s)

I2(s)=6250s(s2+500s+2500)

We find the partial decomposition

Let I2(s)=6250s(s2+500s+2500)=As+Bs+Cs2+500s+2500

6250=A(s2+500s+2500)+(Bs+C)s

62500=As2+500As+2500A+Bs2+Cs

Comparing the coefficients we get

A=52,B=5,C=1250

Thus I2(s)=52s5s+1250s2+500s+2500

Now we do the same for I1 where we solve the function in terms of I1 and decomposing the partial fraction resulting in

I1(s)=25s+12500s(s2+500s+2500)=5s5s+2475s2+500s+2500

In order to make it nicer on us we need to complete the square as follows

s2+500s+2500=0

s2+500s=2500

s2+500s+(5002)2=2500+(5002)2

s2+500s+62500=6000

(s+250)2(1006)2=0

Thus

I2(s)=52s5s+250(s+250)2(1006)256121006(s+250)2(1006)2


Taking the Inverse Laplace transform gives

1{I2(s)}=i2(t)=525e250tcosh1006t56125e250tsinh1006t

Initial Value Theorem

limssI(s)=f(0+)

limss25s+12500s(s2+500s+2500)=i(0)

i(0)=0

limss6250s(s2+500s+2500)=i(0)

i(0)=0

Final Value Theorem

lims0sI(s)=f()

limss25s+12500s(s2+500s+2500)=i()

i()=0

lims0s6250s(s2+500s+2500)=i()

i()=0

Bode Plots

The following are bode plots for the transfer functions


Error creating thumbnail: File missing
H(s)1=25s+12500s(s2+500s+2500)


Error creating thumbnail: File missing
H(s)2=6250s(s2+500s+2500)